• Title/Summary/Keyword: object-based approach

Search Result 867, Processing Time 0.028 seconds

Metal Surface Defect Detection and Classification using EfficientNetV2 and YOLOv5 (EfficientNetV2 및 YOLOv5를 사용한 금속 표면 결함 검출 및 분류)

  • Alibek, Esanov;Kim, Kang-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.577-586
    • /
    • 2022
  • Detection and classification of steel surface defects are critical for product quality control in the steel industry. However, due to its low accuracy and slow speed, the traditional approach cannot be effectively used in a production line. The current, widely used algorithm (based on deep learning) has an accuracy problem, and there are still rooms for development. This paper proposes a method of steel surface defect detection combining EfficientNetV2 for image classification and YOLOv5 as an object detector. Shorter training time and high accuracy are advantages of this model. Firstly, the image input into EfficientNetV2 model classifies defect classes and predicts probability of having defects. If the probability of having a defect is less than 0.25, the algorithm directly recognizes that the sample has no defects. Otherwise, the samples are further input into YOLOv5 to accomplish the defect detection process on the metal surface. Experiments show that proposed model has good performance on the NEU dataset with an accuracy of 98.3%. Simultaneously, the average training speed is shorter than other models.

A Study on DB Security Problem Improvement of DB Masking by Security Grade (DB 보안의 문제점 개선을 위한 보안등급별 Masking 연구)

  • Baek, Jong-Il;Park, Dea-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.4
    • /
    • pp.101-109
    • /
    • 2009
  • An encryption module is equipped basically at 8i version ideal of Oracle DBMS, encryption module, but a performance decrease is caused, and users are restrictive. We analyze problem of DB security by technology by circles at this paper whether or not there is an index search, object management disorder, a serious DB performance decrease by encryption, real-time data encryption beauty whether or not there is data approach control beauty circular-based IP. And presentation does the comprehensive security Frame Work which utilized the DB Masking technique that is an alternative means technical encryption in order to improve availability of DB security. We use a virtual account, and set up a DB Masking basis by security grades as alternatives, we check advance user authentication and SQL inquiry approvals and integrity after the fact through virtual accounts, utilize to method as collect by an auditing log that an officer was able to do safely DB.

Art Make-up Design Using Characteristics of Psychedelic Works (사이키델릭 작품의 특성을 활용한 아트 메이크업 디자인)

  • Choi, Su-Jin;Park, Li-La;Kang, Eun-Ju
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.2
    • /
    • pp.206-212
    • /
    • 2022
  • This study suggests art makeup design by utilizing the characteristics of psychedelic works. The study analyzed the concept of being psychedelic and art makeup based on precedent studies and publications, and classified the psychedelic characteristics as being those of mysterious, optical illusions, and playfulness. After selecting the work featuring the characteristics of being psychedelic, six works were created with this motif, by integrating the airbrush, the pictorial, and the object techniques of the art makeup expression techniques. As a result, it was demonstrated that the design that has utilized the characteristics of psychedelic works could be applicable to art makeup. Next, the confluence of art works and art makeup can serve as an approach to drawing creative designs. Thus, this study suggests a direction for extending the creativity and variety of art makeup design, and a continued development for art makeup design by further confluences with various areas is expected

Designing a Reinforcement Learning-Based 3D Object Reconstruction Data Acquisition Simulation (강화학습 기반 3D 객체복원 데이터 획득 시뮬레이션 설계)

  • Young-Hoon Jin
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.11-16
    • /
    • 2023
  • The technology of 3D reconstruction, primarily relying on point cloud data, is essential for digitizing objects or spaces. This paper aims to utilize reinforcement learning to achieve the acquisition of point clouds in a given environment. To accomplish this, a simulation environment is constructed using Unity, and reinforcement learning is implemented using the Unity package known as ML-Agents. The process of point cloud acquisition involves initially setting a goal and calculating a traversable path around the goal. The traversal path is segmented at regular intervals, with rewards assigned at each step. To prevent the agent from deviating from the path, rewards are increased. Additionally, rewards are granted each time the agent fixates on the goal during traversal, facilitating the learning of optimal points for point cloud acquisition at each traversal step. Experimental results demonstrate that despite the variability in traversal paths, the approach enables the acquisition of relatively accurate point clouds.

Markerless camera pose estimation framework utilizing construction material with standardized specification

  • Harim Kim;Heejae Ahn;Sebeen Yoon;Taehoon Kim;Thomas H.-K. Kang;Young K. Ju;Minju Kim;Hunhee Cho
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.535-544
    • /
    • 2024
  • In the rapidly advancing landscape of computer vision (CV) technology, there is a burgeoning interest in its integration with the construction industry. Camera calibration is the process of deriving intrinsic and extrinsic parameters that affect when the coordinates of the 3D real world are projected onto the 2D plane, where the intrinsic parameters are internal factors of the camera, and extrinsic parameters are external factors such as the position and rotation of the camera. Camera pose estimation or extrinsic calibration, which estimates extrinsic parameters, is essential information for CV application at construction since it can be used for indoor navigation of construction robots and field monitoring by restoring depth information. Traditionally, camera pose estimation methods for cameras relied on target objects such as markers or patterns. However, these methods, which are marker- or pattern-based, are often time-consuming due to the requirement of installing a target object for estimation. As a solution to this challenge, this study introduces a novel framework that facilitates camera pose estimation using standardized materials found commonly in construction sites, such as concrete forms. The proposed framework obtains 3D real-world coordinates by referring to construction materials with certain specifications, extracts the 2D coordinates of the corresponding image plane through keypoint detection, and derives the camera's coordinate through the perspective-n-point (PnP) method which derives the extrinsic parameters by matching 3D and 2D coordinate pairs. This framework presents a substantial advancement as it streamlines the extrinsic calibration process, thereby potentially enhancing the efficiency of CV technology application and data collection at construction sites. This approach holds promise for expediting and optimizing various construction-related tasks by automating and simplifying the calibration procedure.

Thermal imaging and computer vision technologies for the enhancement of pig husbandry: a review

  • Md Nasim Reza;Md Razob Ali;Samsuzzaman;Md Shaha Nur Kabir;Md Rejaul Karim;Shahriar Ahmed;Hyunjin Kyoung;Gookhwan Kim;Sun-Ok Chung
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.31-56
    • /
    • 2024
  • Pig farming, a vital industry, necessitates proactive measures for early disease detection and crush symptom monitoring to ensure optimum pig health and safety. This review explores advanced thermal sensing technologies and computer vision-based thermal imaging techniques employed for pig disease and piglet crush symptom monitoring on pig farms. Infrared thermography (IRT) is a non-invasive and efficient technology for measuring pig body temperature, providing advantages such as non-destructive, long-distance, and high-sensitivity measurements. Unlike traditional methods, IRT offers a quick and labor-saving approach to acquiring physiological data impacted by environmental temperature, crucial for understanding pig body physiology and metabolism. IRT aids in early disease detection, respiratory health monitoring, and evaluating vaccination effectiveness. Challenges include body surface emissivity variations affecting measurement accuracy. Thermal imaging and deep learning algorithms are used for pig behavior recognition, with the dorsal plane effective for stress detection. Remote health monitoring through thermal imaging, deep learning, and wearable devices facilitates non-invasive assessment of pig health, minimizing medication use. Integration of advanced sensors, thermal imaging, and deep learning shows potential for disease detection and improvement in pig farming, but challenges and ethical considerations must be addressed for successful implementation. This review summarizes the state-of-the-art technologies used in the pig farming industry, including computer vision algorithms such as object detection, image segmentation, and deep learning techniques. It also discusses the benefits and limitations of IRT technology, providing an overview of the current research field. This study provides valuable insights for researchers and farmers regarding IRT application in pig production, highlighting notable approaches and the latest research findings in this field.

A Product Model Centered Integration Methodology for Design and Construction Information (프로덕트 모델 중심의 설계, 시공 정보 통합 방법론)

  • Lee Keun-Hyoung;Kim Jae-Jun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.99-106
    • /
    • 2002
  • Researches on integration of design and construction information from earlier era focused on the conceptual data models. Development and prevalent use of commercial database management system led many researchers to design database schemas for enlightening of relationship between non-graphic data items. Although these researches became the foundation fur the proceeding researches. they did not utilize the graphic data providable from CAD system which is already widely used. 4D CAD concept suggests a way of integrating graphic data with schedule data. Although this integration provided a new possibility for integration, there exists a limitation in data dependency on a specific application. This research suggests a new approach on integration for design and construction information, 'Product Model Centered Integration Methodology'. This methodology achieves integration by preliminary research on existing methodology using 4D CAD concept. and by development and application of new integration methodology, 'Product Model Centered Integration Methodology'. 'Design Component' can be converted into digital format by object based CAD system. 'Unified Object-based Graphic Modeling' shows how to model graphic product model using CAD system. Possibility of reusing design information in latter stage depends on the ways of creating CAD model, so modeling guidelines and specifications are suggested. Then prototype system for integration management, and exchange are presented, using 'Product Frameworker', and 'Product Database' which also supports multiple-viewpoints. 'Product Data Model' is designed, and main data workflows are represented using 'Activity Diagram', one of UML diagrams. These can be used for writing programming codes and developing prototype in order to automatically create activity items in actual schedule management system. Through validation processes, 'Product Model Centered Integration Methodology' is suggested as the new approach for integration of design and construction information.

  • PDF

Normalization of Face Images Subject to Directional Illumination using Linear Model (선형모델을 이용한 방향성 조명하의 얼굴영상 정규화)

  • 고재필;김은주;변혜란
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.1
    • /
    • pp.54-60
    • /
    • 2004
  • Face recognition is one of the problems to be solved by appearance based matching technique. However, the appearance of face image is very sensitive to variation in illumination. One of the easiest ways for better performance is to collect more training samples acquired under variable lightings but it is not practical in real world. ]:n object recognition, it is desirable to focus on feature extraction or normalization technique rather than focus on classifier. This paper presents a simple approach to normalization of faces subject to directional illumination. This is one of the significant issues that cause error in the face recognition process. The proposed method, ICR(illumination Compensation based on Multiple Linear Regression), is to find the plane that best fits the intensity distribution of the face image using the multiple linear regression, then use this plane to normalize the face image. The advantages of our method are simple and practical. The planar approximation of a face image is mathematically defined by the simple linear model. We provide experimental results to demonstrate the performance of the proposed ICR method on public face databases and our database. The experimental results show a significant improvement of the recognition accuracy.

Discriminant Analysis of Human's Implicit Intent based on Eyeball Movement (안구운동 기반의 사용자 묵시적 의도 판별 분석 모델)

  • Jang, Young-Min;Mallipeddi, Rammohan;Kim, Cheol-Su;Lee, Minho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.212-220
    • /
    • 2013
  • Recently, there has been tremendous increase in human-computer/machine interaction system, where the goal is to provide with an appropriate service to the user at the right time with minimal human inputs for human augmented cognition system. To develop an efficient human augmented cognition system based on human computer/machine interaction, it is important to interpret the user's implicit intention, which is vague, in addition to the explicit intention. According to cognitive visual-motor theory, human eye movements and pupillary responses are rich sources of information about human intention and behavior. In this paper, we propose a novel approach for the identification of human implicit visual search intention based on eye movement pattern and pupillary analysis such as pupil size, gradient of pupil size variation, fixation length/count for the area of interest. The proposed model identifies the human's implicit intention into three types such as navigational intent generation, informational intent generation, and informational intent disappearance. Navigational intent refers to the search to find something interesting in an input scene with no specific instructions, while informational intent refers to the search to find a particular target object at a specific location in the input scene. In the present study, based on the human eye movement pattern and pupillary analysis, we used a hierarchical support vector machine which can detect the transitions between the different implicit intents - navigational intent generation to informational intent generation and informational intent disappearance.

Design of IoT Gateway based Event-Driven Architecture for Intelligent Buildings. (IoT 게이트웨이 기반 지능형 건물의 이벤트 중심 아키텍쳐 설계)

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.256-259
    • /
    • 2016
  • The growth of mobile devices in Internet of Things (IoT) leads to a number of intelligent buildings related IoT applications. For instance, home automation controlling system uses client system such web apps on smartphone or web service to access the home server by sending control commands. The home server receives the command, then controls for instance the light system. The gateway based RESTful technology responsible for handling clients' requests attests an internet latency in case a large number of clients' requests submit toward the gateway increases. In this paper, we propose the design tasks of the IoT gateway for handling concurrency events. In the procedure of designing tasks, concurrency is best understood by employing multiple levels of abstraction. The way that is eminently to accomplish concurrency is to build an object-oriented environment with support for messages passing between concurrent objects. We also investigate the performance of event-driven architecture for building IoT gateway using node.js on one side and communication protocol based message-oriented middleware known as XMPP to handle communications of intelligent building control devices connected to the gateway through a centralized hub. The Node.JS is 40% faster than the traditional web server side features thread-based approach. The use of Node.js server-side handles a large number of clients' requests, then therefore, reduces delay in performing predefined actions automatically in intelligent building IoT environment.

  • PDF