• Title/Summary/Keyword: object tracking

Search Result 1,489, Processing Time 0.029 seconds

Object detection and tracking using a high-performance artificial intelligence-based 3D depth camera: towards early detection of African swine fever

  • Ryu, Harry Wooseuk;Tai, Joo Ho
    • Journal of Veterinary Science
    • /
    • v.23 no.1
    • /
    • pp.17.1-17.10
    • /
    • 2022
  • Background: Inspection of livestock farms using surveillance cameras is emerging as a means of early detection of transboundary animal disease such as African swine fever (ASF). Object tracking, a developing technology derived from object detection aims to the consistent identification of individual objects in farms. Objectives: This study was conducted as a preliminary investigation for practical application to livestock farms. With the use of a high-performance artificial intelligence (AI)-based 3D depth camera, the aim is to establish a pathway for utilizing AI models to perform advanced object tracking. Methods: Multiple crossovers by two humans will be simulated to investigate the potential of object tracking. Inspection of consistent identification will be the evidence of object tracking after crossing over. Two AI models, a fast model and an accurate model, were tested and compared with regard to their object tracking performance in 3D. Finally, the recording of pig pen was also processed with aforementioned AI model to test the possibility of 3D object detection. Results: Both AI successfully processed and provided a 3D bounding box, identification number, and distance away from camera for each individual human. The accurate detection model had better evidence than the fast detection model on 3D object tracking and showed the potential application onto pigs as a livestock. Conclusions: Preparing a custom dataset to train AI models in an appropriate farm is required for proper 3D object detection to operate object tracking for pigs at an ideal level. This will allow the farm to smoothly transit traditional methods to ASF-preventing precision livestock farming.

Towards Real-time Multi-object Tracking in CPU Environment (CPU 환경에서의 실시간 동작을 위한 딥러닝 기반 다중 객체 추적 시스템)

  • Kim, Kyung Hun;Heo, Jun Ho;Kang, Suk-Ju
    • Journal of Broadcast Engineering
    • /
    • v.25 no.2
    • /
    • pp.192-199
    • /
    • 2020
  • Recently, the utilization of the object tracking algorithm based on the deep learning model is increasing. A system for tracking multiple objects in an image is typically composed of a chain form of an object detection algorithm and an object tracking algorithm. However, chain-type systems composed of several modules require a high performance computing environment and have limitations in their application to actual applications. In this paper, we propose a method that enables real-time operation in low-performance computing environment by adjusting the computational process of object detection module in the object detection-tracking chain type system.

A Method of Tracking Object using Particle Filter and Adaptive Observation Model

  • Kim, Hyoyeon;Kim, Kisang;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • In this paper, we propose an efficient method that is tracking an object in real time using particle filter and adaptive observation model. When tracking object, it happens object shape variation by camera or object movement in variety environments. The traditional method has an error of tracking from these variation, because it has fixed observation model about the selected object by the user in the initial frame. In order to overcome these problems, we propose a method that updates the observation model by calculating the similarity between the used observation model and the eight-way of edge model from the current position. If the similarity is higher than the threshold value, tracking the object using updated observation model to reset observation model. On the contrary to this, the algorithm which consists of a process is to maintain the used observation model. Finally, this paper demonstrates the performance of the stable tracking through comparison with the traditional method by using a number of experimental data.

Multi-Object Tracking based on Reliability Assessment of Learning in Mobile Environment (모바일 환경 신뢰도 평가 학습에 의한 다중 객체 추적)

  • Han, Woo ri;Kim, Young-Seop;Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.73-77
    • /
    • 2015
  • This paper proposes an object tracking system according to reliability assessment of learning in mobile environments. The proposed system is based on markerless tracking, and there are four modules which are recognition, tracking, detecting and learning module. Recognition module detects and identifies an object to be matched on current frame correspond to the database using LSH through SURF, and then this module generates a standard object information that has the best reliability of learning. The standard object information is used for evaluating and learning the object that is successful tracking in tracking module. Detecting module finds out the object based on having the best possible knowledge available among the learned objects information, when the system fails to track. The experimental results show that the proposed system is able to recognize and track the reliable objects with reliability assessment of learning for the use of mobile platform.

Object Tracking with Radical Change of Color Distribution Using EM algorithm

  • Whoang In-Teck;Choi Kwang-Nam
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.388-390
    • /
    • 2006
  • This paper presents an object tracking with radical change of color. Conventional Mean Shift do not provide appropriate result when major color distribution disappear. Our tracking approach is based on Mean Shift as basic tracking method. However we propose tracking algorithm that shows good results for an object of radical variation. The key idea is iterative update previous color information of an object that shows different color by using EM algorithm. As experiment results, we show that our proposed algorithm is an effective approach in tracking for a real object include an object having radical change of color.

  • PDF

Accelerating particle filter-based object tracking algorithms using parallel programming

  • Truong, Mai Thanh Nhat;Kim, Sanghoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.469-470
    • /
    • 2018
  • Object tracking is a common task in computer vision, an essential part of various vision-based applications. After several years of development, object tracking in video is still a challenging problem because of various visual properties of objects and surrounding environment. Particle filter is a well-known technique among common approaches, has been proven its effectiveness in dealing with difficulties in object tracking. However, particle filter is a high-complexity algorithms, which is an severe disadvantage because object tracking algorithms are required to run in real time. In this research, we utilize parallel programming to accelerate particle filter-based object tracking algorithms. Experimental results showed that our approach reduced the execution time significantly.

Object Feature Tracking Algorithm based on Siame-FPN (Siame-FPN기반 객체 특징 추적 알고리즘)

  • Kim, Jong-Chan;Lim, Su-Chang
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.247-256
    • /
    • 2022
  • Visual tracking of selected target objects is fundamental challenging problems in computer vision. Object tracking localize the region of target object with bounding box in the video. We propose a Siam-FPN based custom fully CNN to solve visual tracking problems by regressing the target area in an end-to-end manner. A method of preserving the feature information flow using a feature map connection structure was applied. In this way, information is preserved and emphasized across the network. To regress object region and to classify object, the region proposal network was connected with the Siamese network. The performance of the tracking algorithm was evaluated using the OTB-100 dataset. Success Plot and Precision Plot were used as evaluation matrix. As a result of the experiment, 0.621 in Success Plot and 0.838 in Precision Plot were achieved.

An Advanced Visual Tracking and Stable Grasping Algorithm for a Moving Object (시각센서를 이용한 움직이는 물체의 추적 및 안정된 파지를 위한 알고리즘의 개발)

  • 차인혁;손영갑;한창수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.175-182
    • /
    • 1998
  • An advanced visual tracking and stable grasping algorithm for a moving object is proposed. The stable grasping points for a moving 2D polygonal object are obtained through the visual tracking system with the Kalman filter and image prediction technique. The accuracy and efficiency are improved more than any other prediction algorithms for the tracking of an object. In the processing of a visual tracking. the shape predictors construct the parameterized family and grasp planner find the grasping points of unknown object through the geometric properties of the parameterized family. This algorithm conducts a process of ‘stable grasping and real time tracking’.

  • PDF

Active Shape Model-based Object Tracking using Depth Sensor (깊이 센서를 이용한 능동형태모델 기반의 객체 추적 방법)

  • Jung, Hun Jo;Lee, Dong Eun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.1
    • /
    • pp.141-150
    • /
    • 2013
  • This study proposes technology using Active Shape Model to track the object separating it by depth-sensors. Unlike the common visual camera, the depth-sensor is not affected by the intensity of illumination, and therefore a more robust object can be extracted. The proposed algorithm removes the horizontal component from the information of the initial depth map and separates the object using the vertical component. In addition, it is also a more efficient morphology, and labeling to perform image correction and object extraction. By applying Active Shape Model to the information of an extracted object, it can track the object more robustly. Active Shape Model has a robust feature-to-object occlusion phenomenon. In comparison to visual camera-based object tracking algorithms, the proposed technology, using the existing depth of the sensor, is more efficient and robust at object tracking. Experimental results, show that the proposed ASM-based algorithm using depth sensor can robustly track objects in real-time.

Real-Time Object Tracking Algorithm based on Adaptive Color Model in Surveillance Networks (서베일런스 네트워크에서 적응적 색상 모델을 기초로 한 실시간 객체 추적 알고리즘)

  • Kang, Sung-Kwan;Lee, Jung-Hyun
    • Journal of Digital Convergence
    • /
    • v.13 no.9
    • /
    • pp.183-189
    • /
    • 2015
  • In this paper, we propose an object tracking method using the color information of the image in surveillance network. This method perform a object detection using of adaptive color model. Object contour detection plays an important role in application such as object recognition. Experimental results demonstrate successful object detection over a wide range of object's variation in color and scale. In applications to detect an object in real time, when transmitting a large amount of image data it is possible to find the mode of a color distribution. The specific color of an object is modified at dynamically changing color in image. So, this algorithm detects the tracking area information of object within relevant tracking area and only tracking the movement of that object.Through experiments, we show that proposed method is more robust than other methods under certain ideal situations.