• Title/Summary/Keyword: object matching

Search Result 644, Processing Time 0.028 seconds

Stereo Vision-based Visual Odometry Using Robust Visual Feature in Dynamic Environment (동적 환경에서 강인한 영상특징을 이용한 스테레오 비전 기반의 비주얼 오도메트리)

  • Jung, Sang-Jun;Song, Jae-Bok;Kang, Sin-Cheon
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.263-269
    • /
    • 2008
  • Visual odometry is a popular approach to estimating robot motion using a monocular or stereo camera. This paper proposes a novel visual odometry scheme using a stereo camera for robust estimation of a 6 DOF motion in the dynamic environment. The false results of feature matching and the uncertainty of depth information provided by the camera can generate the outliers which deteriorate the estimation. The outliers are removed by analyzing the magnitude histogram of the motion vector of the corresponding features and the RANSAC algorithm. The features extracted from a dynamic object such as a human also makes the motion estimation inaccurate. To eliminate the effect of a dynamic object, several candidates of dynamic objects are generated by clustering the 3D position of features and each candidate is checked based on the standard deviation of features on whether it is a real dynamic object or not. The accuracy and practicality of the proposed scheme are verified by several experiments and comparisons with both IMU and wheel-based odometry. It is shown that the proposed scheme works well when wheel slip occurs or dynamic objects exist.

  • PDF

Efficient Object-based Image Retrieval Method using Color Features from Salient Regions

  • An, Jaehyun;Lee, Sang Hwa;Cho, Nam Ik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.229-236
    • /
    • 2017
  • This paper presents an efficient object-based color image-retrieval algorithm that is suitable for the classification and retrieval of images from small to mid-scale datasets, such as images in PCs, tablets, phones, and cameras. The proposed method first finds salient regions by using regional feature vectors, and also finds several dominant colors in each region. Then, each salient region is partitioned into small sub-blocks, which are assigned 1 or 0 with respect to the number of pixels corresponding to a dominant color in the sub-block. This gives a binary map for the dominant color, and this process is repeated for the predefined number of dominant colors. Finally, we have several binary maps, each of which corresponds to a dominant color in a salient region. Hence, the binary maps represent the spatial distribution of the dominant colors in the salient region, and the union (OR operation) of the maps can describe the approximate shapes of salient objects. Also proposed in this paper is a matching method that uses these binary maps and which needs very few computations, because most operations are binary. Experiments on widely used color image databases show that the proposed method performs better than state-of-the-art and previous color-based methods.

Invariant-Feature Based Object Tracking Using Discrete Dynamic Swarm Optimization

  • Kang, Kyuchang;Bae, Changseok;Moon, Jinyoung;Park, Jongyoul;Chung, Yuk Ying;Sha, Feng;Zhao, Ximeng
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.151-162
    • /
    • 2017
  • With the remarkable growth in rich media in recent years, people are increasingly exposed to visual information from the environment. Visual information continues to play a vital role in rich media because people's real interests lie in dynamic information. This paper proposes a novel discrete dynamic swarm optimization (DDSO) algorithm for video object tracking using invariant features. The proposed approach is designed to track objects more robustly than other traditional algorithms in terms of illumination changes, background noise, and occlusions. DDSO is integrated with a matching procedure to eliminate inappropriate feature points geographically. The proposed novel fitness function can aid in excluding the influence of some noisy mismatched feature points. The test results showed that our approach can overcome changes in illumination, background noise, and occlusions more effectively than other traditional methods, including color-tracking and invariant feature-tracking methods.

Vision Based Sensor Fusion System of Biped Walking Robot for Environment Recognition (영상 기반 센서 융합을 이용한 이쪽로봇에서의 환경 인식 시스템의 개발)

  • Song, Hee-Jun;Lee, Seon-Gu;Kang, Tae-Gu;Kim, Dong-Won;Seo, Sam-Jun;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.123-125
    • /
    • 2006
  • This paper discusses the method of vision based sensor fusion system for biped robot walking. Most researches on biped walking robot have mostly focused on walking algorithm itself. However, developing vision systems for biped walking robot is an important and urgent issue since biped walking robots are ultimately developed not only for researches but to be utilized in real life. In the research, systems for environment recognition and tole-operation have been developed for task assignment and execution of biped robot as well as for human robot interaction (HRI) system. For carrying out certain tasks, an object tracking system using modified optical flow algorithm and obstacle recognition system using enhanced template matching and hierarchical support vector machine algorithm by wireless vision camera are implemented with sensor fusion system using other sensors installed in a biped walking robot. Also systems for robot manipulating and communication with user have been developed for robot.

  • PDF

Nonlinear 3D Correlator Based on Pixel Restoration for Enhanced Objects Recognition (향상된 물체 인식을 위한 픽셀 복원 기반의 비선형 3D 상관기)

  • Shin, Donghak;Lee, Joon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.712-717
    • /
    • 2013
  • In this paper, we propose a performance-enhanced object recognition by using nonlinear 3D correlator based on pixel restoration. In the proposed method, elemental images of the 3D target that are partially occluded by a foreground object are picked up and transformed into sub-images. By using the block-matching algorithm, the occluded target regions of each sub-image are estimated and removed. After that, the missing pixels in each sub-image are reestablished by using the pixel-restoration method. Finally, through the nonlinear cross-correlations between the reconstructed reference and the target plane images, the improved object recognition can be performed. To show the feasibility of the proposed method, some preliminary experiments are carried out and results are presented by comparing the conventional method.

Surveillance Video Retrieval based on Object Motion Trajectory (물체의 움직임 궤적에 기반한 감시 비디오의 검색)

  • 정영기;이규원;호요성
    • Journal of Broadcast Engineering
    • /
    • v.5 no.1
    • /
    • pp.41-49
    • /
    • 2000
  • In this paper, we propose a new method of indexing and searching based on object-specific features at different semantic levels for video retrieval. A moving trajectory model is used as an indexing key for accessing the individual object in the semantic level. By tracking individual objects with segmented data, we can generate motion trajectories and set model parameters using polynomial curve fitting. The proposed searching scheme supports various types of queries including query by example, query by sketch, and query on weighting parameters for event-based video retrieval. When retrieving the interested video clip, the system returns the best matching event in the similarity order.

  • PDF

Movement Detection Algorithm Using Virtual Skeleton Model (가상 모델을 이용한 움직임 추출 알고리즘)

  • Joo, Young-Hoon;Kim, Se-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.731-736
    • /
    • 2008
  • In this paper, we propose the movement detection algorithm by using virtual skeleton model. To do this, first, we eliminate error values by using conventioanl method based on RGB color model and eliminate unnecessary values by using the HSI color model. Second, we construct the virtual skeleton model with skeleton information of 10 peoples. After matching this virtual model to original image, we extract the real head silhouette by using the proposed circle searching method. Third, we extract the object by using the mean-shift algorithm and this head information. Finally, we validate the applicability of the proposed method through the various experiments in a complex environments.

Enhancement of Object Detection using Haze Removal Approach in Single Image (단일 영상에서 안개 제거 방법을 이용한 객체 검출 알고리즘 개선)

  • Ahn, Hyochang;Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.76-80
    • /
    • 2018
  • In recent years, with the development of automobile technology, smart system technology that assists safe driving has been developed. A camera is installed on the front and rear of the vehicle as well as on the left and right sides to detect and warn of collision risks and hazards. Beyond the technology of simple black-box recording via cameras, we are developing intelligent systems that combine various computer vision technologies. However, most related studies have been developed to optimize performance in laboratory-like environments that do not take environmental factors such as weather into account. In this paper, we propose a method to detect object by restoring visibility in image with degraded image due to weather factors such as fog. First, the image quality degradation such as fog is detected in a single image, and the image quality is improved by restoring using an intermediate value filter. Then, we used an adaptive feature extraction method that removes unnecessary elements such as noise from the improved image and uses it to recognize objects with only the necessary features. In the proposed method, it is shown that more feature points are extracted than the feature points of the region of interest in the improved image.

A Matching Method of Recommendations Advertisements by Extracting Immersive 360-degree Video Object (실감형 360도 영상저작물 객체 추출을 통한 추천광고 매칭방법)

  • Jang, Seyoung;Park, Byeongchan;Kim, Youngmo;Yoo, Injae;Lee, Jeacheng;Kim, Seok-Yoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.231-233
    • /
    • 2020
  • 최근 360도 형태로 영상을 촬영하고 제공하는 경우가 많아 일반적인 동영상과 달리 360도 형태의 영상저작물에 적절하고 효과적인 방법으로 광고를 삽입하여 노출 시킬 수 있는 방법이 필요하게 되었다. 따라서 본 논문에서는 실감형 360도 영상저작물 객체 추출을 통한 추천 광고 매칭방법을 제안한다. 360도 영상저작물 내에 광고를 매칭하고 추출된 객체와 연관된 광고를 추출하여 해당 프레임에 자동으로 삽입 노출이 가능하도록 하는 방법으로 이 방법을 이용함으로써 사용자의 현재 시점 영역 내에 광고 영상이 노출되도록 광고의 삽입 위치를 이동시켜 영상이 재생되도록 하거나, 광고 영상이 삽입된 좌표로 사용자의 현재 시점을 이동시켜 영상이 재생되게 할 수 있다.

  • PDF

Feature-based Image Analysis for Object Recognition on Satellite Photograph (인공위성 영상의 객체인식을 위한 영상 특징 분석)

  • Lee, Seok-Jun;Jung, Soon-Ki
    • Journal of the HCI Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.35-43
    • /
    • 2007
  • This paper presents a system for image matching and recognition based on image feature detection and description techniques from artificial satellite photographs. We propose some kind of parameters from the varied environmental elements happen by image handling process. The essential point of this experiment is analyzes that affects match rate and recognition accuracy when to change of state of each parameter. The proposed system is basically inspired by Lowe's SIFT(Scale-Invariant Transform Feature) algorithm. The descriptors extracted from local affine invariant regions are saved into database, which are defined by k-means performed on the 128-dimensional descriptor vectors on an artificial satellite photographs from Google earth. And then, a label is attached to each cluster of the feature database and acts as guidance for an appeared building's information in the scene from camera. This experiment shows the various parameters and compares the affected results by changing parameters for the process of image matching and recognition. Finally, the implementation and the experimental results for several requests are shown.

  • PDF