• Title/Summary/Keyword: object features

Search Result 1,194, Processing Time 0.033 seconds

Vision-Based Activity Recognition Monitoring Based on Human-Object Interaction at Construction Sites

  • Chae, Yeon;Lee, Hoonyong;Ahn, Changbum R.;Jung, Minhyuk;Park, Moonseo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.877-885
    • /
    • 2022
  • Vision-based activity recognition has been widely attempted at construction sites to estimate productivity and enhance workers' health and safety. Previous studies have focused on extracting an individual worker's postural information from sequential image frames for activity recognition. However, various trades of workers perform different tasks with similar postural patterns, which degrades the performance of activity recognition based on postural information. To this end, this research exploited a concept of human-object interaction, the interaction between a worker and their surrounding objects, considering the fact that trade workers interact with a specific object (e.g., working tools or construction materials) relevant to their trades. This research developed an approach to understand the context from sequential image frames based on four features: posture, object, spatial features, and temporal feature. Both posture and object features were used to analyze the interaction between the worker and the target object, and the other two features were used to detect movements from the entire region of image frames in both temporal and spatial domains. The developed approach used convolutional neural networks (CNN) for feature extractors and activity classifiers and long short-term memory (LSTM) was also used as an activity classifier. The developed approach provided an average accuracy of 85.96% for classifying 12 target construction tasks performed by two trades of workers, which was higher than two benchmark models. This experimental result indicated that integrating a concept of the human-object interaction offers great benefits in activity recognition when various trade workers coexist in a scene.

  • PDF

Object Analysis on Outdoor Environment Using Multiple Features for Autonomous Navigation Robot (자율주행 로봇을 위한 다중 특징을 이용하여 외부환경에서 물체 분석)

  • Kim, Dae-Nyeon;Jo, Kang-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.651-662
    • /
    • 2010
  • This paper describes a method to identify objects for autonomous navigation of an outdoor mobile robot. To identify objects, the robot recognizes the object from an image taken by moving robot on outdoor environment. As a beginning, this paper presents the candidates for a segment of region to building of artificial object, sky and trees of natural objects. Then we define their characteristics individually. In the process, we segment the regions of the objects included by preprocessing using multiple features. Multiple features are HSI, line segments, context information, hue co-occurrence matrix, principal components and vanishing point. An analysis of building identifies the geometrical properties of building facet such as wall region, windows and entrance. The building as intersection in vertical and horizontal line segment of vanishing point extracts the mesh. The wall region of building detect by merging the mesh of the neighbor parallelograms that have similar colors. The property estimates the number of story and rooms in the same floors by merging skewed parallelograms of the same color. We accomplish the result of image segmentation using multiple features and the geometrical properties analysis of object through experiments.

Object Recognition for Mobile Robot using Context-based Bi-directional Reasoning (상황 정보 기반 양방향 추론 방법을 이용한 이동 로봇의 물체 인식)

  • Lim, G.H.;Ryu, G.G.;Suh, I.H.;Kim, J.B.;Zhang, G.X.;Kang, J.H.;Park, M.K.
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.6-8
    • /
    • 2007
  • In this paper, We propose reasoning system for object recognition and space classification using not only visual features but also contextual information. It is necessary to perceive object and classify space in real environments for mobile robot. especially vision based. Several visual features such as texture, SIFT. color are used for object recognition. Because of sensor uncertainty and object occlusion. there are many difficulties in vision-based perception. To show the validities of our reasoning system. experimental results will be illustrated. where object and space are inferred by bi -directional rules even with partial and uncertain information. And the system is combined with top-down and bottom-up approach.

  • PDF

Implementation of Improved Object Detection and Tracking based on Camshift and SURF for Augmented Reality Service (증강현실 서비스를 위한 Camshift와 SURF를 개선한 객체 검출 및 추적 구현)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.97-102
    • /
    • 2017
  • Object detection and tracking have become one of the most active research areas in the past few years, and play an important role in computer vision applications over our daily life. Many tracking techniques are proposed, and Camshift is an effective algorithm for real time dynamic object tracking, which uses only color features, so that the algorithm is sensitive to illumination and some other environmental elements. This paper presents and implements an effective moving object detection and tracking to reduce the influence of illumination interference, which improve the performance of tracking under similar color background. The implemented prototype system recognizes object using invariant features, and reduces the dimension of feature descriptor to rectify the problems. The experimental result shows that that the system is superior to the existing methods in processing time, and maintains better problem ratios in various environments.

  • PDF

(Algorithm for Recognizing Bulb in Cluster) (계기판 벌브 인식 알고리즘)

  • 이철헌;설성욱;김효성
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.1
    • /
    • pp.37-45
    • /
    • 2002
  • This paper proposes new features for recognizing telltale bulb in a cluster. A typical feature employed in model-based pattern recognition is polygonal approximation points of object. But recognition using these dominant points has many mismatching counts in small model such as telltale bulb. To reduce mismatching counts, proposed features are the circle distribution of object pixel and the ratio of distance from center to boundary in object. This Paper also proposes new decision function using three features. In simulation result, we make a comparison mismatching counts between recognition using dominant points and the new recognition algorithm using three features.

Detection and Recognition of Overlapped Circular Objects based a Signature Representation Scheme (Signature 기반의 겹쳐진 원형 물체 검출 및 인식 기법)

  • Park, Sang-Bum;Hahn, Hern-Soo;Han, Young-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.54-61
    • /
    • 2008
  • This paper proposes a new algorithm for detecting and recognizing overlapped objects among a stack of arbitrarily located objects using a signature representation scheme. The proposed algorithm consists of two processes of detecting overlap of objects and of determining the boundary between overlapping objects. To determine overlap of objects, in the first step, the edge image of object region is extracted and those areas in the object region are considered as the object areas if an area is surrounded by a closed edge. For each object, its signature image is constructed by measuring the distances of those edge points from the center of the object, along the angle axis, which are located at every angle with reference to the center of the object. When an object is not overlapped, its features which consist of the positions and angles of outstanding points in the signature are searched in the database to find its corresponding model. When an object is overlapped, its features are partially matched with those object models among which the best matching model is selected as the corresponding model. The boundary among the overlapping objects is determined by projecting the signature to the original image. The performance of the proposed algorithm has been tested with the task of picking the top or non-overlapped object from a stack of arbitrarily located objects. In the experiment, a recognition rate of 98% has been achieved.

For the Association between 3D VAR Model and 2D Features

  • Kiuchi, Yasuhiko;Tanaka, Masaru;Fujiki, Jun;Mishima, Taketoshi
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1404-1407
    • /
    • 2002
  • Although we look at objects as 2D images through our eyes, we can reconstruct the shape and/or depth of objects. In order to realize this ability using computers, it is required that the method which can estimate the 3D features of object from 2D images. As feature which represents 3D shapes effectively, three dimensional vector autoregressive model is pro- posed. If this feature is associated other feature of 2D shape, then above aim might be achieved. On the other hand, as feature which represents 2D shapes, quasi moment features is proposed. As the first step of association of these features, we constructed real time simulator that computes both of two features concurrently from object data (3D curves) . This simulator can also rotate object and estimate the rotation The method using 3D VAR model estimates the rotation correctly, but the estimation by quasi moment features includes much errors. This reason would be that projected images are constructed by the points only, and doesn't have enough sizes to estimate the correct 3D rotation parameters.

  • PDF

Object Recognition by Invariant Feature Extraction in FLIR (적외선 영상에서의 불변 특징 정보를 이용한 목표물 인식)

  • 권재환;이광연;김성대
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.65-68
    • /
    • 2000
  • This paper describes an approach for extracting invariant features using a view-based representation and recognizing an object with a high speed search method in FLIR. In this paper, we use a reformulated eigenspace technique based on robust estimation for extracting features which are robust for outlier such as noise and clutter. After extracting feature, we recognize an object using a partial distance search method for calculating Euclidean distance. The experimental results show that the proposed method achieves the improvement of recognition rate compared with standard PCA.

  • PDF

Strategical matching algorithm for 3-D object recoginition (3차원 물체 인식을 위한 전략적 매칭 알고리듬)

  • 이상근;이선호;송호근;최종수
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.1
    • /
    • pp.55-63
    • /
    • 1998
  • This paper presents a new maching algorithm by Hopfield Neural Network for 3-D object recognition. In the proposed method, a model object is represented by a set of polygons in a single coordinate. And each polygon is described by a set of features; feature attributes. In case of 3-D object recognition, the scale and poses of the object are important factors. So we propose a strategy for 3-D object recognition independently to its scale and poses. In this strategy, the respective features of the input or the model objects are changed to the startegical constants when they are compared with one another. Finally, we show that the proposed method has a robustness through the results of experiments which included the classification of the input objects and the matching sequence to its 3-D rotation and scale.

  • PDF

An Automatic Object Extraction Method Using Color Features Of Object And Background In Image (영상에서 객체와 배경의 색상 특징을 이용한 자동 객체 추출 기법)

  • Lee, Sung Kap;Park, Young Soo;Lee, Gang Seong;Lee, Jong Yong;Lee, Sang Hun
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.459-465
    • /
    • 2013
  • This paper is a study on an object extraction method which using color features of an object and background in the image. A human recognizes an object through the color difference of object and background in the image. So we must to emphasize the color's difference that apply to extraction result in this image. Therefore, we have converted to HSV color images which similar to human visual system from original RGB images, and have created two each other images that applied Median Filter and we merged two Median filtered images. And we have applied the Mean Shift algorithm which a data clustering method for clustering color features. Finally, we have normalized 3 image channels to 1 image channel for binarization process. And we have created object map through the binarization which using average value of whole pixels as a threshold. Then, have extracted major object from original image use that object map.