• Title/Summary/Keyword: object detection and classification

Search Result 296, Processing Time 0.027 seconds

Manufacture artificial intelligence education kit using Jetson Nano and 3D printer (Jetson Nano와 3D프린터를 이용한 인공지능 교육용 키트 제작)

  • SeongJu Park;NamHo Kim
    • Smart Media Journal
    • /
    • v.11 no.11
    • /
    • pp.40-48
    • /
    • 2022
  • In this paper, an educational kit that can be used in AI education was developed to solve the difficulties of AI education. Through this, object detection and person detection in computer vision using CNN and OpenCV to learn practical-oriented experiences from theory-centered and user image recognition (Your Own) that learns and recognizes specific objects Image Recognition), user object classification (Segmentation) and segmentation (Classification Datasets), IoT hardware control that attacks the learned target, and Jetson Nano GPIO, an AI board, are developed and utilized to develop and utilize textbooks that help effective AI learning made it possible.

Performance Analysis of Viola & Jones Face Detection Algorithm (Viola & Jones 얼굴 검출 알고리즘의 성능 분석)

  • Oh, Jeong-su;Heo, Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.477-480
    • /
    • 2018
  • Viola and Jones object detection algorithm is a representative face detection algorithm. The algorithm uses Haar-like features for face expression and uses a cascade-Adaboost algorithm consisting of strong classifiers, a linear combination of weak classifiers for classification. This algorithm requires several parameter settings for its implementation and the set values affect its performance. This paper analyzes face detection performance according to the parameters set in the algorithm.

  • PDF

A New Hybrid Algorithm for Invariance and Improved Classification Performance in Image Recognition

  • Shi, Rui-Xia;Jeong, Dong-Gyu
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.85-96
    • /
    • 2020
  • It is important to extract salient object image and to solve the invariance problem for image recognition. In this paper we propose a new hybrid algorithm for invariance and improved classification performance in image recognition, whose algorithm is combined by FT(Frequency-tuned Salient Region Detection) algorithm, Guided filter, Zernike moments, and a simple artificial neural network (Multi-layer Perceptron). The conventional FT algorithm is used to extract initial salient object image, the guided filtering to preserve edge details, Zernike moments to solve invariance problem, and a classification to recognize the extracted image. For guided filtering, guided filter is used, and Multi-layer Perceptron which is a simple artificial neural networks is introduced for classification. Experimental results show that this algorithm can achieve a superior performance in the process of extracting salient object image and invariant moment feature. And the results show that the algorithm can also classifies the extracted object image with improved recognition rate.

Livestock Theft Detection System Using Skeleton Feature and Color Similarity (골격 특징 및 색상 유사도를 이용한 가축 도난 감지 시스템)

  • Kim, Jun Hyoung;Joo, Yung Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.586-594
    • /
    • 2018
  • In this paper, we propose a livestock theft detection system through moving object classification and tracking method. To do this, first, we extract moving objects using GMM(Gaussian Mixture Model) and RGB background modeling method. Second, it utilizes a morphology technique to remove shadows and noise, and recognizes moving objects through labeling. Third, the recognized moving objects are classified into human and livestock using skeletal features and color similarity judgment. Fourth, for the classified moving objects, CAM (Continuously Adaptive Meanshift) Shift and Kalman Filter are used to perform tracking and overlapping judgment, and risk is judged to generate a notification. Finally, several experiments demonstrate the feasibility and applicability of the proposed method.

Classification of Objects using CNN-Based Vision and Lidar Fusion in Autonomous Vehicle Environment

  • G.komali ;A.Sri Nagesh
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.67-72
    • /
    • 2023
  • In the past decade, Autonomous Vehicle Systems (AVS) have advanced at an exponential rate, particularly due to improvements in artificial intelligence, which have had a significant impact on social as well as road safety and the future of transportation systems. The fusion of light detection and ranging (LiDAR) and camera data in real-time is known to be a crucial process in many applications, such as in autonomous driving, industrial automation and robotics. Especially in the case of autonomous vehicles, the efficient fusion of data from these two types of sensors is important to enabling the depth of objects as well as the classification of objects at short and long distances. This paper presents classification of objects using CNN based vision and Light Detection and Ranging (LIDAR) fusion in autonomous vehicles in the environment. This method is based on convolutional neural network (CNN) and image up sampling theory. By creating a point cloud of LIDAR data up sampling and converting into pixel-level depth information, depth information is connected with Red Green Blue data and fed into a deep CNN. The proposed method can obtain informative feature representation for object classification in autonomous vehicle environment using the integrated vision and LIDAR data. This method is adopted to guarantee both object classification accuracy and minimal loss. Experimental results show the effectiveness and efficiency of presented approach for objects classification.

Object detection technology trend and development direction using deep learning

  • Kwak, NaeJoung;Kim, DongJu
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.119-128
    • /
    • 2020
  • Object detection is an important field of computer vision and is applied to applications such as security, autonomous driving, and face recognition. Recently, as the application of artificial intelligence technology including deep learning has been applied in various fields, it has become a more powerful tool that can learn meaningful high-level, deeper features, solving difficult problems that have not been solved. Therefore, deep learning techniques are also being studied in the field of object detection, and algorithms with excellent performance are being introduced. In this paper, a deep learning-based object detection algorithm used to detect multiple objects in an image is investigated, and future development directions are presented.

Object Detection and Post-processing of LNGC CCS Scaffolding System using 3D Point Cloud Based on Deep Learning (딥러닝 기반 LNGC 화물창 스캐닝 점군 데이터의 비계 시스템 객체 탐지 및 후처리)

  • Lee, Dong-Kun;Ji, Seung-Hwan;Park, Bon-Yeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.303-313
    • /
    • 2021
  • Recently, quality control of the Liquefied Natural Gas Carrier (LNGC) cargo hold and block-erection interference areas using 3D scanners have been performed, focusing on large shipyards and the international association of classification societies. In this study, as a part of the research on LNGC cargo hold quality management advancement, a study on deep-learning-based scaffolding system 3D point cloud object detection and post-processing were conducted using a LNGC cargo hold 3D point cloud. The scaffolding system point cloud object detection is based on the PointNet deep learning architecture that detects objects using point clouds, achieving 70% prediction accuracy. In addition, the possibility of improving the accuracy of object detection through parameter adjustment is confirmed, and the standard of Intersection over Union (IoU), an index for determining whether the object is the same, is achieved. To avoid the manual post-processing work, the object detection architecture allows automatic task performance and can achieve stable prediction accuracy through supplementation and improvement of learning data. In the future, an improved study will be conducted on not only the flat surface of the LNGC cargo hold but also complex systems such as curved surfaces, and the results are expected to be applicable in process progress automation rate monitoring and ship quality control.

Popular Object detection algorithms in deep learning (딥러닝을 이용한 객체 검출 알고리즘)

  • Kang, Dongyeon
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.427-430
    • /
    • 2019
  • Object detection is applied in various field. Autonomous driving, surveillance, OCR(optical character recognition) and aerial image etc. We will look at the algorithms that are using to object detect. These algorithms are divided into two methods. The one is R-CNN algorithms [2], [5], [6] which based on region proposal. The other is YOLO [7] and SSD [8] which are one stage object detector based on regression/classification.

A study of duck detection using deep neural network based on RetinaNet model in smart farming

  • Jeyoung Lee;Hochul Kang
    • Journal of Animal Science and Technology
    • /
    • v.66 no.4
    • /
    • pp.846-858
    • /
    • 2024
  • In a duck cage, ducks are placed in various states. In particular, if a duck is overturned and falls or dies, it will adversely affect the growing environment. In order to prevent the foregoing, it was necessary to continuously manage the cage for duck growth. This study proposes a method using an object detection algorithm to improve the foregoing. Object detection refers to the work to perform classification and localization of all objects present in the image when an input image is given. To use an object detection algorithm in a duck cage, data to be used for learning should be made and the data should be augmented to secure enough data to learn from. In addition, the time required for object detection and the accuracy of object detection are important. The study collected, processed, and augmented image data for a total of two years in 2021 and 2022 from the duck cage. Based on the objects that must be detected, the data collected as such were divided at a ratio of 9 : 1, and learning and verification were performed. The final results were visually confirmed using images different from the images used for learning. The proposed method is expected to be used for minimizing human resources in the growing process in duck cages and making the duck cages into smart farms.

Automatic Mobile Screen Translation Using Object Detection Approach Based on Deep Neural Networks (심층신경망 기반의 객체 검출 방식을 활용한 모바일 화면의 자동 프로그래밍에 관한 연구)

  • Yun, Young-Sun;Park, Jisu;Jung, Jinman;Eun, Seongbae;Cha, Shin;So, Sun Sup
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.11
    • /
    • pp.1305-1316
    • /
    • 2018
  • Graphical user interface(GUI) has a very important role to interact with software users. However, designing and coding of GUI are tedious and pain taking processes. In many studies, the researchers are trying to convert GUI elements or widgets to code or describe formally their structures by help of domain knowledge of stochastic methods. In this paper, we propose the GUI elements detection approach based on object detection strategy using deep neural networks(DNN). Object detection with DNN is the approach that integrates localization and classification techniques. From the experimental result, if we selected the appropriate object detection model, the results can be used for automatic code generation from the sketch or capture images. The successful GUI elements detection can describe the objects as hierarchical structures of elements and transform their information to appropriate code by object description translator that will be studied at future.