• Title/Summary/Keyword: object detection

Search Result 2,456, Processing Time 0.032 seconds

Detection of Pine Wilt Disease tree Using High Resolution Aerial Photographs - A Case Study of Kangwon National University Research Forest - (시계열 고해상도 항공영상을 이용한 소나무재선충병 감염목 탐지 - 강원대학교 학술림 일원을 대상으로 -)

  • PARK, Jeong-Mook;CHOI, In-Gyu;LEE, Jung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.36-49
    • /
    • 2019
  • The objectives of this study were to extract "Field Survey Based Infection Tree of Pine Wilt Disease(FSB_ITPWD)" and "Object Classification Based Infection Tree of Pine Wilt Disease(OCB_ITPWD)" from the Research Forest at Kangwon National University, and evaluate the spatial distribution characteristics and occurrence intensity of wood infested by pine wood nematode. It was found that the OCB optimum weights (OCB) were 11 for Scale, 0.1 for Shape, 0.9 for Color, 0.9 for Compactness, and 0.1 for Smoothness. The overall classification accuracy was approximately 94%, and the Kappa coefficient was 0.85, which was very high. OCB_ITPWD area is approximately 2.4ha, which is approximately 0.05% of the total area. When the stand structure, distribution characteristics, and topographic and geographic factors of OCB_ITPWD and those of FSB_ITPWD were compared, age class IV was the most abundant age class in FSB_ITPWD (approximately 55%) and OCB_ITPWD (approximately 44%) - the latter was 11% lower than the former. The diameter at breast heigh (DBH at 1.2m from the ground) results showed that (below 14cm) and (below 28cm) DBH trees were the majority (approximately 93%) in OCB_ITPWD, while medium and (more then 30cm) DBH trees were the majority (approximately 87%) in FSB_ITPWD, indicating different DBH distribution. On the other hand, the elevation distribution rate of OCB_ITPWD was mostly between 401 and 500m (approximately 30%), while that of FSB_ITPWD was mostly between 301 and 400m (approximately 45%). Additionally, the accessibility from the forest road was the highest at "100m or less" for both OCB_ITPWD (24%) and FSB_ITPWD (31%), indicating that more trees were infected when a stand was closer to a forest road with higher accessibility. OCB_ITPWD hotspots were 31 and 32 compartments, and it was highly distributed in areas with a higher age class and a higher DBH class.

Development of deep learning network based low-quality image enhancement techniques for improving foreign object detection performance (이물 객체 탐지 성능 개선을 위한 딥러닝 네트워크 기반 저품질 영상 개선 기법 개발)

  • Ki-Yeol Eom;Byeong-Seok Min
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.99-107
    • /
    • 2024
  • Along with economic growth and industrial development, there is an increasing demand for various electronic components and device production of semiconductor, SMT component, and electrical battery products. However, these products may contain foreign substances coming from manufacturing process such as iron, aluminum, plastic and so on, which could lead to serious problems or malfunctioning of the product, and fire on the electric vehicle. To solve these problems, it is necessary to determine whether there are foreign materials inside the product, and may tests have been done by means of non-destructive testing methodology such as ultrasound ot X-ray. Nevertheless, there are technical challenges and limitation in acquiring X-ray images and determining the presence of foreign materials. In particular Small-sized or low-density foreign materials may not be visible even when X-ray equipment is used, and noise can also make it difficult to detect foreign objects. Moreover, in order to meet the manufacturing speed requirement, the x-ray acquisition time should be reduced, which can result in the very low signal- to-noise ratio(SNR) lowering the foreign material detection accuracy. Therefore, in this paper, we propose a five-step approach to overcome the limitations of low resolution, which make it challenging to detect foreign substances. Firstly, global contrast of X-ray images are increased through histogram stretching methodology. Second, to strengthen the high frequency signal and local contrast, we applied local contrast enhancement technique. Third, to improve the edge clearness, Unsharp masking is applied to enhance edges, making objects more visible. Forth, the super-resolution method of the Residual Dense Block (RDB) is used for noise reduction and image enhancement. Last, the Yolov5 algorithm is employed to train and detect foreign objects after learning. Using the proposed method in this study, experimental results show an improvement of more than 10% in performance metrics such as precision compared to low-density images.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

Generalization of error decision rules in a grammar checker using Korean WordNet, KorLex (명사 어휘의미망을 활용한 문법 검사기의 문맥 오류 결정 규칙 일반화)

  • So, Gil-Ja;Lee, Seung-Hee;Kwon, Hyuk-Chul
    • The KIPS Transactions:PartB
    • /
    • v.18B no.6
    • /
    • pp.405-414
    • /
    • 2011
  • Korean grammar checkers typically detect context-dependent errors by employing heuristic rules that are manually formulated by a language expert. These rules are appended each time a new error pattern is detected. However, such grammar checkers are not consistent. In order to resolve this shortcoming, we propose new method for generalizing error decision rules to detect the above errors. For this purpose, we use an existing thesaurus KorLex, which is the Korean version of Princeton WordNet. KorLex has hierarchical word senses for nouns, but does not contain any information about the relationships between cases in a sentence. Through the Tree Cut Model and the MDL(minimum description length) model based on information theory, we extract noun classes from KorLex and generalize error decision rules from these noun classes. In order to verify the accuracy of the new method in an experiment, we extracted nouns used as an object of the four predicates usually confused from a large corpus, and subsequently extracted noun classes from these nouns. We found that the number of error decision rules generalized from these noun classes has decreased to about 64.8%. In conclusion, the precision of our grammar checker exceeds that of conventional ones by 6.2%.

Recognition method using stereo images-based 3D information for improvement of face recognition (얼굴인식의 향상을 위한 스테레오 영상기반의 3차원 정보를 이용한 인식)

  • Park Chang-Han;Paik Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.3 s.309
    • /
    • pp.30-38
    • /
    • 2006
  • In this paper, we improved to drops recognition rate according to distance using distance and depth information with 3D from stereo face images. A monocular face image has problem to drops recognition rate by uncertainty information such as distance of an object, size, moving, rotation, and depth. Also, if image information was not acquired such as rotation, illumination, and pose change for recognition, it has a very many fault. So, we wish to solve such problem. Proposed method consists of an eyes detection algorithm, analysis a pose of face, md principal component analysis (PCA). We also convert the YCbCr space from the RGB for detect with fast face in a limited region. We create multi-layered relative intensity map in face candidate region and decide whether it is face from facial geometry. It can acquire the depth information of distance, eyes, and mouth in stereo face images. Proposed method detects face according to scale, moving, and rotation by using distance and depth. We train by using PCA the detected left face and estimated direction difference. Simulation results with face recognition rate of 95.83% (100cm) in the front and 98.3% with the pose change were obtained successfully. Therefore, proposed method can be used to obtain high recognition rate with an appropriate scaling and pose change according to the distance.

The Study on The Identification Model of Friend or Foe on Helicopter by using Binary Classification with CNN

  • Kim, Tae Wan;Kim, Jong Hwan;Moon, Ho Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.33-42
    • /
    • 2020
  • There has been difficulties in identifying objects by relying on the naked eye in various surveillance systems. There is a growing need for automated surveillance systems to replace soldiers in the field of military surveillance operations. Even though the object detection technology is developing rapidly in the civilian domain, but the research applied to the military is insufficient due to a lack of data and interest. Thus, in this paper, we applied one of deep learning algorithms, Convolutional Neural Network-based binary classification to develop an autonomous identification model of both friend and foe helicopters (AH-64, Mi-17) among the military weapon systems, and evaluated the model performance by considering accuracy, precision, recall and F-measure. As the result, the identification model demonstrates 97.8%, 97.3%, 98.5%, and 97.8 for accuracy, precision, recall and F-measure, respectively. In addition, we analyzed the feature map on convolution layers of the identification model in order to check which area of imagery is highly weighted. In general, rotary shaft of rotating wing, wheels, and air-intake on both of ally and foe helicopters played a major role in the performance of the identification model. This is the first study to attempt to classify images of helicopters among military weapons systems using CNN, and the model proposed in this study shows higher accuracy than the existing classification model for other weapons systems.

Three-Dimensional Processing of Ultrasonic Pulse-Echo Signal (초음파 펄스에코 신호의 3차원 처리)

  • Song, Moon-Ho;Song, Sang-Rock;Cho, Jung-Ho;Sung, Je-Joong;Ahn, Hyung-Keun;Jang, Soon-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.464-474
    • /
    • 2003
  • Ultrasonic imaging of 3-D structures for nondestructive evaluation must provide readily recognizable images with enough details to clearly show various flaws that may or may not be present. Typical flaws that need to be detected are miniature cracks, for instance, in metal pipes having aged over years of operation in nuclear power plants; and these sub-millimeter cracks or flaws must be depicted in the final 3-D image for a meaningful evaluation. As a step towards improving conspicuity and thus detection of flaws, we propose a pulse-echo ultrasonic imaging technique to generate various 3-D views of the 3-D object under evaluation through strategic scanning and processing of the pulse-echo data. We employ a 2-D Wiener filter that filters the pulse-echo data along the plane orthogonal to the beam propagation so that ultrasonic beams can be sharpened. This three-dimensional processing and display coupled with 3-D manipulation capabilities by which users are able to pan and rotate the 3-D structure improve conspicuity of flaws. Providing such manipulation operations allow a clear depiction of the size and the location of various flaws in 3-D.

Development of a Metamodel-Based Healthcare Service System using OSGi Component Platform (OSGi 컴포넌트 플랫폼을 이용한 메타모델 기반의 건강관리 서비스 시스템 개발)

  • Kim, Tae-Woong;Kim, Hee-Cheol
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.121-132
    • /
    • 2011
  • A healthcare system is a type of medical information system that performs early detection and prevention in diseases by checking one's health condition periodically. Such a healthcare system is based on the signal obtained from the body. However, the developed existing system represents certain differences in the storage and description of vital signs according to medicare devices and the evaluation method of the system. It brings some disadvantages, such as lacks in the interoperability between systems, increases in the development cost of systems, and absence of a unified system. Thus, this study develops a healthcare system based on a meta model. For establishing this objective, this study describes and stores vital sign data based on the standard meta model of HL7 and applies OCL, which is a mathematical specification language, for defining wellness indexes and extracting data in order to evaluate health risk appraisals in health. In addition, this study implements components based on OSGi and assemble them in order to easily extend various devices and systems. By describing vital data based on the meta model, it represents some advantages that it makes possible to ensure the interoperability between systems and introduce the standardization of the evaluation method of health conditions through defining the wellness index using OCL. Also, it provides dear specifications.

SEARCHING MINOR PLANETS AND PHOTOMETRIC QUALITY OF 60cm REFLECTOR IN GIMHAE ASTRONOMICAL OBSERVATORY (김해천문대 60cm 반사망원경의 측광성능 분석과 소행성 탐사)

  • Lee, Sang-Hyun;Kang, Yong-Woo;Lee, Kyung-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.3
    • /
    • pp.209-218
    • /
    • 2007
  • In this paper, we have presented the observational result for the photometric quality of main telescopes in Gimhae Astronomical Observatory. Also we performed the observation of searching new minor planets as competitive work in public observatories. The observation was carried out using 60cm telescope of Gimhae Astronomical Observatory on 2007 January 13. And, $Sch\ddot{u}ler$ BVI filters and 1K CCD camera (AP8p) were used. To define the quality of CCD photometry, we observed the region of well-known standard stars in the open cluster M67. From observed data, The transformation coefficients and airmass coefficients were obtained, and the accuracy of CCD photometry was investigated. From PSF photometry, we obtained the color-magnitude diagram of M67, and considered the useful magnitude limit and the physical properties of M67. This method can be successfully used to confirm the photometric quality of main telescope in public observatories. To investigate the detection possibility of unknown object as astroid, we observed the near area of the opposition in the ecliptic plane. And we discussed the result. Our result show that it can be possible to detect minor planets in solar system brighter than $V{\sim}18.3mag$. and it can carry out photometric study brighter than V 16mag. in Gimhae Astronomical Observatory. These results imply that the public observatories can make the research work.

Detection and Analysis of Post-Typhoon, Nabi Three-Dimensional Changes in Haeundae Sand Beach Topography using GPS and GIS Technology (GPS·GIS 기법을 활용한 태풍 후 해운대 해빈지형의 3차원 변화 탐지 및 분석)

  • Hong, Hyun-Jung;Choi, Chul-Uong;Jeon, Seong-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.82-92
    • /
    • 2006
  • As beaches throughout Korea have suffered great losses of sand due to artificial developments and meteorological phenomena, particularly typhoons, it is necessary to monitor beaches that are prone to erosion continuously, establish and enforce a comprehensive plan to attack coastal erosion with the object of the long-term management. However, debates and temporary measures, not based on accurate coastal zone surveys and analyses, have been established up to now. Therefore, with Haeundae sand beach as a case study, we proposed methods to collect accurate spatial data of the coastline and the sand beach through GPS survey. And we detected and analyzed topographic changes resulting from Typhoon Nabi quantitatively and qualitatively, by using GIS technique. Results showed a mean elevation of 1.95 m, a total area of 53,441 $m^2$, and a total volume of 104,639 $m^3$ after Typhoon Nabi. Mean elevation rose 0.06 m between the pre- and the post-typhoon surveys by a protective shore wall. However, strong winds and north-northeast surges brought by the typhoon caused erosion of the area and the volume, by 3,096 $m^2$ and 2,320 $m^3$. Accurate spatial databases of coastal zones based on integrated GPS GIS techniques and quantitative and qualitative analyses of topographical changes will help Korea develop systematic and effective countermeasures against coastal erosion.

  • PDF