• Title/Summary/Keyword: object detect

Search Result 935, Processing Time 0.041 seconds

Deep Learning for Herbal Medicine Image Recognition: Case Study on Four-herb Product

  • Shin, Kyungseop;Lee, Taegyeom;Kim, Jinseong;Jun, Jaesung;Kim, Kyeong-Geun;Kim, Dongyeon;Kim, Dongwoo;Kim, Se Hee;Lee, Eun Jun;Hyun, Okpyung;Leem, Kang-Hyun;Kim, Wonnam
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.87-87
    • /
    • 2019
  • The consumption of herbal medicine and related products (herbal products) have increased in South Korea. At the same time the quality, safety, and efficacy of herbal products is being raised. Currently, the herbal products are standardized and controlled according to the requirements of the Korean Pharmacopoeia, the National Institute of Health and the Ministry of Public Health and Social Affairs. The validation of herbal products and their medicinal component is important, since many of these herbal products are composed of two or more medicinal plants. However, there are no tools to support the validation process. Interest in deep learning has exploded over the past decade, for herbal medicine using algorithms to achieve herb recognition, symptom related target prediction, and drug repositioning have been reported. In this study, individual images of four herbs (Panax ginseng C.A. Meyer, Atractylodes macrocephala Koidz, Poria cocos Wolf, Glycyrrhiza uralensis Fischer), actually sold in the market, were achieved. Certain image preprocessing steps such as noise reduction and resize were formatted. After the features are optimized, we applied GoogLeNet_Inception v4 model for herb image recognition. Experimental results show that our method achieved test accuracy of 95%. However, there are two limitations in the current study. Firstly, due to the relatively small data collection (100 images), the training loss is much lower than validation loss which possess overfitting problem. Secondly, herbal products are mostly in a mixture, the applied method cannot be reliable to detect a single herb from a mixture. Thus, further large data collection and improved object detection is needed for better classification.

  • PDF

Image retrieval based on a combination of deep learning and behavior ontology for reducing semantic gap (시맨틱 갭을 줄이기 위한 딥러닝과 행위 온톨로지의 결합 기반 이미지 검색)

  • Lee, Seung;Jung, Hye-Wuk
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.11
    • /
    • pp.1133-1144
    • /
    • 2019
  • Recently, the amount of image on the Internet has rapidly increased, due to the advancement of smart devices and various approaches to effective image retrieval have been researched under these situation. Existing image retrieval methods simply detect the objects in a image and carry out image retrieval based on the label of each object. Therefore, the semantic gap occurs between the image desired by a user and the image obtained from the retrieval result. To reduce the semantic gap in image retrievals, we connect the module for multiple objects classification based on deep learning with the module for human behavior classification. And we combine the connected modules with a behavior ontology. That is to say, we propose an image retrieval system considering the relationship between objects by using the combination of deep learning and behavior ontology. We analyzed the experiment results using walking and running data to take into account dynamic behaviors in images. The proposed method can be extended to the study of automatic annotation generation of images that can improve the accuracy of image retrieval results.

Development of Interactive Signage using Floating Hologram (플로팅 홀로그램을 이용한 인터랙티브 사이니지 개발)

  • Kim, Dong-Jing;Jeong, Dong Hyo;Kim, Tae-Yong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.4
    • /
    • pp.180-185
    • /
    • 2018
  • We have developed an interactive signage system based on floating hologram by combining hologram technology and ICT technology, which can be competitive to small businesses that have excellent products and services. The developed interactive signage system can be used for publicity and marketing of small business owners at low cost, introducing menus with 3D hologram images, and providing various contents responding to user's hand movements. The developed system is able to detect 10 finger movements at a rate of 290 frames per second in a range of 60cm and a range of 150 degrees. We also confirmed that the virtual touch function operates normally by dividing the user's motion recognition into the hover zone and the touch zone by the physical motion experiment of the leap motion object.

A Study on H-CNN Based Pedestrian Detection Using LGP-FL and Hippocampal Structure (LGP-FL과 해마 구조를 이용한 H-CNN 기반 보행자 검출에 대한 연구)

  • Park, Su-Bin;Kang, Dae-Seong
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.75-83
    • /
    • 2018
  • Recently, autonomous vehicles have been actively studied. Pedestrian detection and recognition technology is important in autonomous vehicles. Pedestrian detection using CNN(Convolutional Neural Netwrok), which is mainly used recently, generally shows good performance, but there is a performance degradation depending on the environment of the image. In this paper, we propose a pedestrian detection system applying long-term memory structure of hippocampal neural network based on CNN network with LGP-FL (Local Gradient Pattern-Feature Layer) added. First, change the input image to a size of $227{\times}227$. Then, the feature is extracted through a total of 5 layers of convolution layer. In the process, LGP-FL adds the LGP feature pattern and stores the high-frequency pattern in the long-term memory. In the detection process, it is possible to detect the pedestrian more accurately by detecting using the LGP feature pattern information robust to brightness and color change. A comparison of the existing methods and the proposed method confirmed the increase of detection rate of about 1~4%.

Crack Detection on the Road in Aerial Image using Mask R-CNN (Mask R-CNN을 이용한 항공 영상에서의 도로 균열 검출)

  • Lee, Min Hye;Nam, Kwang Woo;Lee, Chang Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.3
    • /
    • pp.23-29
    • /
    • 2019
  • Conventional crack detection methods have a problem of consuming a lot of labor, time and cost. To solve these problems, an automatic detection system is needed to detect cracks in images obtained by using vehicles or UAVs(unmanned aerial vehicles). In this paper, we have studied road crack detection with unmanned aerial photographs. Aerial images are generated through preprocessing and labeling to generate morphological information data sets of cracks. The generated data set was applied to the mask R-CNN model to obtain a new model in which various crack information was learned. Experimental results show that the cracks in the proposed aerial image were detected with an accuracy of 73.5% and some of them were predicted in a certain type of crack region.

The System for 3D Image Obtain and Provide corresponding to User's Viewpoint (사용자 시점에 대응 3차원 영상 획득 및 제공 시스템)

  • Lee, Seung-Jae;Jeon, Yeong-Mi;Kim, Nam-Woo;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.835-837
    • /
    • 2016
  • In this research, Detect viewpoint of the user in other to obtain the coordinates and provided obtain a corresponding stereo images of different positions, Provide a system which can be observed remotely break the spatial limits. For system configuration Designed with a physical action such as left and right movement and rotation of the head is the largest factor in human viewpoint change. Therefore, this system is calculated to analyze user viewpoint, Control system for providing three-dimensional images obtained, It is implemented in network communication for data transmission, As the user observed the object in the same space even though free to observe a target at a remote location, Obtaining a stereo image that corresponds to the viewpoint providing a three-dimensional image, We implemented a system that provides the same visual effect and directly observed.

  • PDF

Development of Fire Detection Algorithm for Video Incident Detection System of Double Deck Tunnel (복층터널 영상유고감지시스템의 화재 감지 알고리즘 개발)

  • Kim, Tae-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1082-1087
    • /
    • 2019
  • Video Incident Detection System is a detection system for the purpose of detection of an emergency in an unexpected situation such as a pedestrian in a tunnel, a falling object, a stationary vehicle, a reverse run, and a fire(smoke and flame). In recent years, the importance of the city center has been emphasized by the construction of underpasses in great depth underground space. Therefore, in order to apply Video Incident Detection System to a Double Deck Tunnel, it was developed to reflect the design characteristics of the Double Deck Tunnel. and In this paper especially, the fire detection technology, which is not it is difficult to apply to the Double Deck Tunnel environment because it is not supported on existing Video Incident Detection System or has a fail detect, we propose fire detection using color image analysis, silhouette spread, and statistical properties, It is verified through a real fire test in a double deck tunnel test bed environment.

Extraction of Intestinal Obstruction in X-Ray Images Using PCM (PCM 클러스터링을 이용한 X-Ray 영상에서 장폐색 추출)

  • Kim, Kwang Baek;Woo, Young Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1618-1624
    • /
    • 2020
  • Intestinal obstruction diagnosis method based on X-ray can affect objective diagnosis because it includes subjective factors of the examiner. Therefore, in this paper, a detection method of Intestinal Obstruction from X-Ray image using Hough transform and PCM is proposed. The proposed method uses Hough transform to detect straight lines from the extracted ROI of the intestinal obstruction X-Ray image and bowel obstruction is extracted by using air fluid level's morphological characteristic detected by the straight lines. Then, ROI is quantized by applying PCM clustering algorithm to the extracted ROI. From the quantized ROI, cluster group that includes bowel obstruction's characteristic is selected and small bowel regions are extracted by using object search from the selected cluster group. The proposed method of using PCM is applied to 30 X-Ray images of intestinal obstruction patients and setting the initial cluster number of PCM to 4 showed excellent performance in detection and the TPR was 81.47%.

Loitering Behavior Detection Using Shadow Removal and Chromaticity Histogram Matching (그림자 제거와 색도 히스토그램 비교를 이용한 배회행위 검출)

  • Park, Eun-Soo;Lee, Hyung-Ho;Yun, Myoung-Kyu;Kim, Min-Gyu;Kwak, Jong-Hoon;Kim, Hak-Il
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.6
    • /
    • pp.171-181
    • /
    • 2011
  • Proposed in this paper is the intelligent video surveillance system to effectively detect multiple loitering objects even that disappear from the out of camera's field of view and later return to a target zone. After the background and foreground are segmented using Gaussian mixture model and shadows are removed, the objects returning to the target zone is recognized using the chromaticity histogram and the duration of loitering is preserved. For more accurate measurement of the loitering behavior, the camera calibration is also applied to map the image plane to the real-world ground. Hence, the loitering behavior can be detected by considering the time duration of the object's existence in the real-world space. The experiment was performed using loitering video and all of the loitering behaviors are accurately detected.

Pine Wilt Disease Detection Based on Deep Learning Using an Unmanned Aerial Vehicle (무인항공기를 이용한 딥러닝 기반의 소나무재선충병 감염목 탐지)

  • Lim, Eon Taek;Do, Myung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.317-325
    • /
    • 2021
  • Pine wilt disease first appeared in Busan in 1998; it is a serious disease that causes enormous damage to pine trees. The Korean government enacted a special law on the control of pine wilt disease in 2005, which controls and prohibits the movement of pine trees in affected areas. However, existing forecasting and control methods have physical and economic challenges in reducing pine wilt disease that occurs simultaneously and radically in mountainous terrain. In this study, the authors present the use of a deep learning object recognition and prediction method based on visual materials using an unmanned aerial vehicle (UAV) to effectively detect trees suspected of being infected with pine wilt disease. In order to observe pine wilt disease, an orthomosaic was produced using image data acquired through aerial shots. As a result, 198 damaged trees were identified, while 84 damaged trees were identified in field surveys that excluded areas with inaccessible steep slopes and cliffs. Analysis using image segmentation (SegNet) and image detection (YOLOv2) obtained a performance value of 0.57 and 0.77, respectively.