• Title/Summary/Keyword: object detect

Search Result 935, Processing Time 0.023 seconds

A Development of Video Tracking System on Real Time Using MBR (MBR을 이용한 실시간 영상추적 시스템 개발)

  • Kim, Hee-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1243-1248
    • /
    • 2006
  • Object tracking in a real time image is one of interesting subjects in computer vision and many practical application fields past couple of years. But sometimes existing systems cannot find object by recognize background noise as object. This paper proposes a method of object detection and tracking using adaptive background image in real time. To detect object which does not influenced by illumination and remove noise in background image, this system generates adaptive background image by real time background image updating. This system detects object using the difference between background image and input image from camera. After setting up MBR(minimum bounding rectangle) using the internal point of detected object, the system tracks object through this MBR. In addition, this paper evaluates the test result about performance of proposed method as compared with existing tracking algorithm.

  • PDF

Radar Image Analysis for Detection of Shape of Voids in or under Concrete Slabs (레이다 탐사에 의한 소공동의 단면형상 복원방법에 관한 연구)

  • 박석균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.791-796
    • /
    • 1997
  • Deterioration of pavements or tunnels primarily from the existence of voids under the pavements or tunnel linings. To detect these voids effectively by non-destructive testes, a method using radar was proposed. In this research, the detection of shape of voids by radar image processing is investigate. The experiments and simulation were conducted to detect voids in or under concrete pavements for tunnel linings) with reinforcing bars. From the results, the fundamental algorithm for tracing the voids, improving the horizontal resolution of the object image and detecting shape of objects, was verified.

  • PDF

Novel velocity detection of moving object with rough surface vertically illuminated by self-mixing laser diode

  • Shibata, Takaaki;Shinohara, Shigenobu;Ikeda, Hiroaki;Yoshida, Hirofumi;Sumi, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.494-497
    • /
    • 1994
  • We propose a novel velocity detection method of moving object based on a speckle pattern on the target surface using a self-mixing laser diode (SMLD). By this measurement, it was confirmed that the speckle signal has its waveform independent of the target velocity, and has its averaged frequency directly proportional to the target velocity. So it will be possible to detect the velocity of the target transversely translating against the laser light beam using a compact measuring system.

  • PDF

Distance Measurement Using the Kinect Sensor with Neuro-image Processing

  • Sharma, Kajal
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.6
    • /
    • pp.379-383
    • /
    • 2015
  • This paper presents an approach to detect object distance with the use of the recently developed low-cost Kinect sensor. The technique is based on Kinect color depth-image processing and can be used to design various computer-vision applications, such as object recognition, video surveillance, and autonomous path finding. The proposed technique uses keypoint feature detection in the Kinect depth image and advantages of depth pixels to directly obtain the feature distance in the depth images. This highly reduces the computational overhead and obtains the pixel distance in the Kinect captured images.

Image segmentation algorithm based on weight information (가중치 정보를 이용한 영상 분할 알고리즘)

  • Kim, Sun-jib;Park, Byung-Joon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.5
    • /
    • pp.472-477
    • /
    • 2016
  • The most important and critical to the performance of video surveillance systems is to be detected exactly how much. In order to accurately track the object must be able to accurately separate the background and object. However, the system itself rather than the human vision exactly distinguish the object and the background, to assess the situation, it is not easy. If we can accurately detect the background and the object, to be able to accurately track an object, it is possible to increase the reliability of the system, have a significant impact on the success of the entire production system. In this paper, we propose a way to distinguish more precisely the background and the object being to determine the background environment changes more accurately.

A Moving Object Tracking System from a Moving Camera by Integration of Motion Estimation and Double Difference (BBME와 DD를 통합한 움직이는 카메라로부터의 이동물체 추적 시스템)

  • 설성욱;송진기;장지혜;이철헌;남기곤
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.173-181
    • /
    • 2004
  • In this paper, we propose a system for automatic moving object detection and tracking in sequence images acquired from a moving camera. The proposed algorithm consists of moving object detection and its tracking. Moving object can be detected by integration of BBME and DD method We segment the detected object using histogram back projection, match it using histogram intersection, extract and track it using XY-projection. Computer simulation results have shown that the proposed algorithm is reliable and can successfully detect and track a moving object on image sequences obtained by a moving camera.

Implementation of a Single Image Detection and Tracking System in Multiple Images (다중 이미지에서 단일 이미지 검출 및 추적 시스템 구현)

  • Choi, Jaehak;Park, Inho;Kim, Seongyoon;Lee, Yonghwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.78-81
    • /
    • 2017
  • Augmented Reality(AR) is the core technology of the future knowledge service industry. It is expected to be used in various fields such as medical, education, entertainment etc. Briefly, augmented reality technology is a technique in which a mapped virtual object is augmented when a real-world object is viewed through a device after mapping a real-world object and a virtual object. In this paper, we implemented object detection and tracking system, which is a key technology of augmented reality. To speed up the object tracking, the ORB algorithm, which is a lightweight algorithm compared to the detection algorithm, is applied. In addition, KNN classifier, which is a machine learning algorithm, was applied to detect a single object by learning multiple images.

  • PDF

Intelligent Black Box with Rotating Screen using Infrared Distance Sensor (적외선 거리 센서를 이용한 지능형 화면회전 블랙박스)

  • Rhee, Eugene
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.168-173
    • /
    • 2018
  • To overcome the problems of the existing black box which is exposed to the risk of blind spots in the imaging of a fixed front and rear views of an object, this paper suggests a new intelligent black box that can detect and shoot side views of an object. This paper proposes an algorithm of the intelligent black box with a rotating function in order to compensate for the side blind spot of the vehicle. This intelligent black box with rotating screen adopts the infrared distance sensor to sense an object which approaches to the vehicle and rotates automatically towards the object.

Pedestrian Detection and Tracking Method for Autonomous Navigation Vehicle using Markov chain Monte Carlo Algorithm (MCMC 방법을 이용한 자율주행 차량의 보행자 탐지 및 추적방법)

  • Hwang, Jung-Won;Kim, Nam-Hoon;Yoon, Jeong-Yeon;Kim, Chang-Hwan
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.2
    • /
    • pp.113-119
    • /
    • 2012
  • In this paper we propose the method that detects moving objects in autonomous navigation vehicle using LRF sensor data. Object detection and tracking methods are widely used in research area like safe-driving, safe-navigation of the autonomous vehicle. The proposed method consists of three steps: data segmentation, mobility classification and object tracking. In order to make the raw LRF sensor data to be useful, Occupancy grid is generated and the raw data is segmented according to its appearance. For classifying whether the object is moving or static, trajectory patterns are analysed. As the last step, Markov chain Monte Carlo (MCMC) method is used for tracking the object. Experimental results indicate that the proposed method can accurately detect moving objects.

REAL-TIME DETECTION OF MOVING OBJECTS IN A ROTATING AND ZOOMING CAMERA

  • Li, Ying-Bo;Cho, Won-Ho;Hong, Ki-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.71-75
    • /
    • 2009
  • In this paper, we present a real-time method to detect moving objects in a rotating and zooming camera. It is useful for camera surveillance of fixed but rotating camera, camera on moving car, and so on. We first compensate the global motion, and then exploit the displaced frame difference (DFD) to find the block-wise boundary. For robust detection, we propose a kind of image to combine the detections from consecutive frames. We use the block-wise detection to achieve the real-time speed, except the pixel-wise DFD. In addition, a fast block-matching algorithm is proposed to obtain local motions and then global affine motion. In the experimental results, we demonstrate that our proposed algorithm can handle the real-time detection of common object, small object, multiple objects, the objects in low-contrast environment, and the object in zooming camera.

  • PDF