• Title/Summary/Keyword: obesogen

Search Result 2, Processing Time 0.027 seconds

Bisphenol A Exposure and Childhood Obesity (Bisphenol A 노출과 소아비만)

  • Yi, Bit-Na;Shin, Hye-Jung;Na, Hyun-Kyung;Lee, Na-Kyung;Yang, Mi-Hi
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.4
    • /
    • pp.287-292
    • /
    • 2009
  • Over the a few decades, the incidences of obesity and associated metabolic syndrome diseases have been increased dramatically and resulted in a global health crisis. Recent findings suggest endocrine disrupting chemicals (EDCs) as an obesogen, because they disrupt normal development and homeostatic controls over adipogenesis and energy balance in obesity. Furthermore, risk of cardiovascular disease and mortality is elevated among those who were obese during childhood. Thus, we focused on etiology of obesity in children and performed biological monitoring of bisphenol A (BPA), which is a broadly exposed EDC in environment. Study subjects were age and sex-matched obese and normal children in Seoul (N=52; age, $8.67{\pm}1.46$ years). Exposure levels of BPA were analyzed with HPLC/FLD as a conjugated form in urine. As results, ranges of urinary BPA were 0~54.38 ${\mu}g/g$ creatinine (median, 4.57 ${\mu}g/g$ creatinine). Levels of urinary BPA were 1.7 fold higher in the obese children than those in the controls (medians of obese and control children, 7.31 and 4.25 ${\mu}g/g$ creatinine, respectively, p=0.22). In the near future, enlarge scaled studies should be performed to confirm the risk of BPA for obesity.

Global DNA Methylation Patterns and Gene Expression Associated with Obesity-Susceptibility in Offspring of Pregnant Sprague-Dawley Rats Exposed to BDE-47 and BDE-209 (임신 중 BDE-47 및 BDE-209에 노출된 어미와 새끼 Sprague-Dawley 랫드의 Global DNA 메틸화 양상과 비만 감수성과 연관된 유전자 발현)

  • Park, Byeong-Min;Yoon, Ok-Jin;Lee, Do-Hoon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.1
    • /
    • pp.28-39
    • /
    • 2017
  • Persistent organic pollutants (POPs) can affect epigenetic mechanisms and obesity development. Polybrominated diphenyl ethers (PBDEs)-widely used to make flames-are one of the important POPs. Prenatal exposure to endocrine disrupting chemicals (EDCs), such as POPs, may affect global DNA methylation in long interspersed nuclear elements (LINE-1), increasing the risk of obesity later in life. Therefore, pregnant Sprague-Dawley (SD) rats were used to elucidate whether BDE-47 and BDE-209 transferred through placenta and breast milk cause epigenetic changes in LINE-1 and increase genetic susceptibility to obesity as obesogen during the developmental periods. Global DNA methylation in LINE-1 and gene expression related to obesity were measured in dams and offspring, using a methylation-sensitive high resolution melting analysis (MS-HRM) and direct bisulfite sequencing and quantitative real time polymerase chain reaction (qPCR), respectively. The results of MS-HRM showed global DNA hypomethylation patterns in LINE-1 of exposed offspring (2 of total 4) at PND 4, but bisulfite sequencing showed no difference in both the exposed and non-exposed groups. Gene expression in dams related to ${\beta}$-oxidation pathway and those related to adipokines showed different patterns between the two groups. On the contrary, gene expressions of offspring showed a similar pattern. Gene expressions related to ${\beta}$-oxidation pathway and obesity were significantly increased when compared with 'at birth', but not $PPAR-{\alpha}$. In conclusion, this study demonstrated the possibility that co-exposure to BDE-47 and BDE-209-via the placenta and breast milk-may affect epigenetic changes and modulate gene expression levels related to obesity.