• Title/Summary/Keyword: oak wood

Search Result 243, Processing Time 0.028 seconds

Total Utilization of Woody Biomass by Steam Explosion (III) - The Preparation of Acetate from Pine and Oak Exploded Wood - (폭쇄법을 이용한 목질계 바이오매스의 종합적 이용 (III) - 소나무와 신갈나무 폭쇄재로부터 셀룰로오스 아세테이트의 제조 -)

  • Lee, Jong-Yoon;Chang, Jun-Pok;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.26-31
    • /
    • 1995
  • Acetylcellulose(AC) was prepared with steam exploded wood(EXW) and EXW after delignification with sodium chlorite, pine (Pinus densiflora) and oak (Quercus mongolica) woods. The color of acetylated pine and oak exploded wood was brown, degree of substitution(D.S) of pine was 1.47~2.09, and this of oak was 1.49~2.29. The hemicellulose content of acetylated pine and oak exploded wood was 0~3.4% and 1.49~11.3%, individually. The degree of substitution of acetylated wood prepared from delignified EXW in the pine and oak wood was 0.50~0.71 and 0.70~0.88, individually. Hemicellulose content of acetylated EXW with sodium chlorite after delignification in the pine and oak wood was less than 1% and 0.6~2.5%. The color of acetylated wood after delignification was white. IR-spectra of acetylated pine and oak EXW after delignification were found that peaks at around 1740$cm^{-1}$ and 1200$cm^{-1}$ increase markedly, due to ester carbonyl group.

  • PDF

Total Utilization of Woody Biomass by Steam Explosion(II) -The Preparation of Carboxymethylcellulose from Exploded Wood- (폭쇄법(爆碎法)을 이용(利用)한 목질계(木質系) biomass의 종합적(綜合的) 이용(利用)(II) -폭쇄재(爆碎材)로부터 Carboxymethyl cellulose의 제조(製造)-)

  • Han, Sang-Yeol;Chang, Jun-Pok;Lee, Jong-Yoon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.30-36
    • /
    • 1994
  • Steam explosion process is one of the most efficient, pretreatment method for the utilization of lignocellulosic biomass. The carbxymethyl-cellulose(CMC) was prepared with steam exploded wood(EXW), pine(Pinus densiflora) and oak(Quercus mongolica), by standard method using isopropyl alcohol and monochloroacetic acid. The range of water solubility of carboxymethylated pine exploded wood was 45.2~66.8 % and those of oak was 60.7~84.7 %. The degree of substitution(D.S) of carboxymethylated pine exploded wood was 0.11~0.33 and oak exploded wood was 0.48~0.76. The color of carboxymethylated pine and oak exploded wood was brown-black. When carboxymethylated EXW was purified by sulfuric acid, the yield of carboxymethylated wood was lower than non-treated one. However, the color was still brown-black although after delignification. In carboxymethylated EXM prepared after delignification, the water solubility and degree of substitution(D.S) of pine were 81.4~95.9 % and 0.71~0.79, and those of oak were 76.2~89.5 % and 0.79~1.05. The values were higher than non-treated. The degree of substitution of purified carboxymethylated wood prepared with delignified EXM, pine and oak were 0.50~0.71 and 0.70~0.88. The color of carboxymethylated wood was white. In carboxymethylated wood preparde after delignification of EXM, swelling ratio and water retention value of pine were 95.9~96.5 and 580.0~751.2, those of oak were 76.2~89.5 and 124.3~307.6.

  • PDF

Studies on the Composition analysis of Oak Mushroom (Lentinula edodes) Cultural Waste (표고버섯 재배용 참나무 폐골목의 화학적 성분분석)

  • Lee, Min-Woo;Seo, Yung-Bum
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2008.04a
    • /
    • pp.222-228
    • /
    • 2008
  • The chemical composition and thermal, crystal characterization of oak mushroom waste were investigated in comparison with those normal oak wood for utilization of cellulose from oak mushroom waste. The oak mushroom waste contained a higher percentage of ash, and hot water extractives than oak wood. This results indicated that the materials inside the body are easily decomposed during the oak mushroom cultivation. The lower percentage of holocellulose and a-cellulose of oak mushroom waste caused by fungal decomposition too. Whereas, the thermal decomposition behavior and crystallinity of oak mushroom waste was similar to that of normal oak wood, which indicated that the cellulose characterization of oak mushroom waste is resistant to fungal decomposition. In additionally, a degree of polymerization of oak mushroom waste must be investigate for examination of cellulose crystalline characterization, especially.

  • PDF

Sound Absorption Capability and Anatomical Features of Oak Mushroom Bed Log (버섯폐골목의 흡음성능과 구조적 특징)

  • Kang, Chunwon;Kang, Wook;Jeong, Insoo;Park, Heejun;Jun, Sunsik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.54-60
    • /
    • 2008
  • Sound absorption coefficients of oak (Quercus mongolica) wood and oak mushroom bed log were measured by the two microphone transfer function method and anatomical features of oak mushroom bed log examined by stereo scope and SEM observations. The sound absorption coefficients of oak mushroom bed log seemed to be higher than those of normal oak wood specimen over all estimated frequency range. Especially, in the frequency range of 2 to 6 kHz, they were about 2~3 times higher than those of normal wood specimen. Due to fungi degradation, the specific gravity of oak mushroom bed log decreased about 70% than that of normal wood. For oak mushroom bed log, abundant pores occurred on the radial, tangential and cross sectional surface and it was considered that the pores behaved as a sound absorbing pore.

Effect of Smoking Process on the Contents of Polycyclic Aromatic Hydrocarbons in Smoke Flavouring (훈연공정이 훈연액 중의 다환방향족 탄화수소의 함량에 미치는 영향)

  • 강희곤;이명섭;이광형;김창한
    • Food Science of Animal Resources
    • /
    • v.18 no.1
    • /
    • pp.42-49
    • /
    • 1998
  • The contents of holocellulose, one of the main components of the wood, were 83.9% in oak wood and 76.9% in apple wood, respectively. Those of hemicellulose were 16.41 and 20.33%, and in lignin 23.0 and 19.7%, respectively. Six species of domestic oak wood and apple wood were considered to be suitable for smoking materials due to the low content of lignin. Benzo(a)pyrene contents in smoke flavoring prepared with oak wood at 150, 400 and 500$^{\circ}C$ were 0. 4, 3. 7 and 5.6$\mu\textrm{g}$,/kg, respectively. The amounts of phenanthrene were 112.7, 131.4 and 255.9$\mu\textrm{g}$/kg, respectively, in each temperature. The amounts of polycyclic aromatic hydrocarbons(PAH) in smoke flavory were in the order of phenanthrene>anthracene>pyrene>benzo(a)anthracene>chrysene>benzo(b)fluoranthens>benzo(a)pyrene Benzo(a)pyrene contents in smoking extracts prepared with apple wood at 150, 400 and 500$^{\circ}C$ were 0.4, 3.3 and 5.5$\mu\textrm{g}$/kg, respectively. Phenanthrene contents in those samples were 72.7, 100.2 and 220.5$\mu\textrm{g}$/kg, respectively. Contents of each PAH showed the same order as in oak wood.

  • PDF

Response Surface Optimization of Phenolic Compounds Extraction From Steam Exploded Oak Wood (Quercus mongolica)

  • Jung, Ji Young;Ha, Si Young;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.809-827
    • /
    • 2017
  • Steam explosion was applied to extract phenolic compounds from oak wood (Quercus mongolica). The effects of three independent factors (ethanol concentration, extraction temperature and extraction time) on the total phenolic content, DPPH radical scavenging activity, and antimicrobial activity from the steam exploded oak wood were optimized using response surface methodology (RSM). The independent variables were coded at three levels and their actual values were selected on the basis of preliminary experimental results. The following optimal extraction conditions were selected: ethanol concentration 82.0%, extraction temperature $71.7^{\circ}C$, and extraction time 60.5 min for total phenolic content; ethanol concentration 78.3%, extraction temperature $70.3^{\circ}C$, and extraction time 57.6 min for DPPH radical scavenging activity; ethanol concentration 80.6%, extraction temperature $68.4^{\circ}C$, and extraction time 59.0 min for antimicrobial activity. The experimental values agreed with those were predicted within confidence intervals indicating the suitability of RSM in optimizing the ethanol extraction of phenolic compounds from the steam exploded oak wood. Under the optimized conditions, the experimental value of the total phenolic content was 111.8 mg GAE/g dry steam exploded oak wood, DPPH free radical scavenging activity was 65.7%, and antimicrobial activity was 17.0 mm, and those are reasonably close to the predicted values (109.2 mg GAE/g dry steam exploded oak wood, 62.3% and 15.9 mm, respectively).

Effect of Finger Profile on Static Bending Strength Performance of Finger-Jointed Wood

  • Park, Han-Min;Lee, Gyun-Pil;Kong, Tae-Suk;Ryu, Hyun-Soo;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.57-66
    • /
    • 2004
  • To study the efficient usage of small diameter logs and woods containing defects such as knots, slope of the grain and decay, six types of finger-jointed woods with various finger profiles were made of poplar, pine and oak with different density. We investigated the effect of finger profile on static bending strength performances of finger-jointed woods. The efficiency of bending MOE, MOR and deflection showed the highest value in poplar finger-jointed wood with the lowest density of three species, and the lowest value in oak finger-jointed wood with the highest density of three species. The values markedly decreased with increasing finger pitch for finger-jointed wood glued with polyvinyl acetate (PVAc) resin for all tested species, whereas for the finger-jointed wood glued with resorcinol-phenol formaldehyde (RPF) resin, the influence of finger pitch on the efficiency of MOE was not found in all tested species, and those on the efficiency of MOR and deflection indicated the same trend as finger-jointed wood glued with PVAc resin in the case of pine and oak finger-jointed wood with higher densities. It was found that the values tended to decrease with increasing density of species on the whole and the desirable finger pitches were L (6.8 mm) for poplar, M (4.4 mm) for pine and S (3.5 mm) for oak in a view of economy. For finger-jointed wood glued with PVAc resin, the fitness between a tip and a root width of a pair of fingers δ of 0.5 mm indicated the highest efficiency of MOE for all species. And, the influence of δ on MOR was only found in oak finger-jointed wood glued with RPF resin and the desirable δ value for oak was 0.1 mm. However, it was found that the influence of δ on the strength performance was very small.

Physico-mechanical Properties and Optimum Manufacturing Conditions of Bi-Sn Metal Alloy Impregnated Wood Composites (Bi-Sn 용융합금주입 목재복합체의 최적제조조건 및 물리·기계적 특성)

  • Park, Kye-Shin;Lee, Hwa-Hyoung;Kang, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.691-699
    • /
    • 2014
  • In order to improve the dimensional stability and durability of wood, this study attempted to impregnate bismuth (Bi) - tin (Sn) alloy metal with low melting temperature into solid woods of three species such as radiata pine, red oak and white oak, and investigated to determine an optimum condition of manufacturing the metal alloy-wood composites with natural wood grains. These Bi-Sn alloys were chosen for this study because they were harmless to human and melting at low temperatures. The composites resulted in high dimensional stability and low thickness swelling, and also showed much improved performance such as high bending strength, high hardness, high electric conductivity, and high thermal conductivity as floor materials. A proper impregnating condition of all specimens was determined as 10 minutes of the preliminary vacuum time, and $185^{\circ}C$ of the heating temperature. The proper processing condition for radiata pine wood was 2.5 minutes of the pressuring time at the pressure of $10kgf/cm^2$. For red oak wood, 10 minutes of the pressuring time at the pressure of $30kgf/cm^2$ were the proper condition. The proper manufacture conditions for white oak wood was determined as 10 minutes of the pressuring time at the pressure of $50kgf/cm^2$.

Evaluation of Strength Performance of the Fumigation Treated Wood Affected by the Oak Wilt Disease (참나무시들음병 훈증목의 강도 성능 평가)

  • SONG, Dabin;KIM, Keonho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.820-831
    • /
    • 2020
  • Fumigation treatment is mainly used on dead trees affected by the oak wilt disease to prevent the spread of damage. To verify the possibility of intensive use of the damaged Mongolian Oak wood treated by the fumigation treatment, we performed the compression and bending performance evaluation of the fumigation treated wood. The fumigation was done with Nemasect (Metam-sodium) for about 9 months. The dry longitudinal compressive strength of the fumigation treated oak wilt-diseased wood at the ambient temperature and humidity, and the compressive modulus of elasticity were measured to be 58.87MPa, and 5.66GPa, which were similar to the non-treated wood. The strength performance of mature wood of fumigation treated wood was 16% higher than that of juvenile wood. The compression fracture of the non-treated oak wood showed various shapes, however, most of the fumigation treated wood showed shear-type fracture shape. The bending strength of the fumigate treated wood was measured to be 157.43MPa, which was 8% higher than that of the non-treated wood, and the bending modulus of elasticity was measured to be 16.38GPa, which was 16% lower than that of the non-treated wood. However, it was confirmed that the coefficient of variation for the bending strength performance value of the fumigation treated wood was lower than that of the non-treated wood.

Evaluation of Antioxidant Activities of Water Extract from Microwave Torrefied Oak Wood

  • Nam, Jeong Bin;Oh, Geun Hye;Yang, Seung Min;Lee, Seok-Eon;Kang, Seog-Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.178-188
    • /
    • 2018
  • The aim of this study was to assess the in vitro potential of water extract from torrefied oak wood as a natural antioxidant. The antioxidant potential of the extracts was assessed by employing different in vitro assays, including reducing power, DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)], and FRAP (ferric reducing antioxidant potential) assays. The DPPH activity of the extract was increased in a dose-dependent manner. Measurement of total flavonoid content of water extract from torrefied oak wood was achieved using an aluminum chloride colorimetric assay; the extract contained 192.12 mg/g flavonoid, which was significantly high when compared with standard quercetin. The results obtained in this study indicate that water extract from torrefied oak wood has significant potential for use as a natural antioxidant agent.