• Title/Summary/Keyword: o-cresol

Search Result 49, Processing Time 0.024 seconds

A Study on the Appropriateness of the Combustible Properties of MSDS for o-Cresol (오토크레졸의 MSDS 연소특성치의 적정성 연구)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.2
    • /
    • pp.21-26
    • /
    • 2015
  • For the safe handling of o-cresol, this study was investigated the explosion limits of o-cresol in the reference data. The flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower flash points of o-cresol by using closed-cup tester were experimented in $77^{\circ}C$ and $80^{\circ}C$. The lower flash points of o-cresol by using open cup tester were experimented in $86^{\circ}C$ and $87^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for o-cresol. The AIT of o-cresol was experimented as $495^{\circ}C$. The lower explosion limit(LEL) by the measured the lower flash point for o-cresol was calculated as 1.27 Vol%.

Solubilization of Cresol Isomers by the Cationic Surfactant of TTTAB in Aqueous Solution of n-Butanol and NaCl (n-부탄올 및 NaCl 수용액에서 양이온 계면활성제인 TTAB에 의한 크레졸 이성질체들의 가용화에 대한 연구)

  • Lee, Byung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.832-839
    • /
    • 2021
  • We tried to investigate the effects of substituent position, temperature, and additives such as NaCl and n-butanol on the solubilizations of cresol isomers by tetradecyltrimethylammonium bromide (TTAB), using the UV-Vis spectrophotometric method. The measured solubilization constants (Ks) values for each cresol isomer increased in the order o-cresolo and ∆Ho values for the solubilizations of cresols were all negative values but the ∆So values were all positive values within the measured ranges. The values of ∆Go increased also with increasing the concentration of n-butanol but decreased with increasing the concentration of NaCl. From these facts, we could conclude that both the enthalpy and entropy changes contribute together for the solubilizations of cresols isomers by cationic surfactant of TTAB and they are solubilized in the polar palisade region or at the surface of micelle.

Interactions between Hydrodenitrogenation of Pyridine and Hydrodeoxygenation of m-Cresol over sulfided CoMo/γ-Al2O3 Catalyst (황화 CoMo/γ-Al2O3 촉매상에서 수첨탈질반응과 수첨탈산소 반응의 상호작용)

  • Kim, Hak-Soo;Park, Hea-Kyung;Kim, Kyung-Lim
    • Applied Chemistry for Engineering
    • /
    • v.2 no.2
    • /
    • pp.108-118
    • /
    • 1991
  • Interactions between pyridine hydrodenitrogenation (HDN) and m-cresol hydrodeoxygenation(HDO), and the kinetic analysis were studied over sulfided $CoMo/{\gamma}-Al_2O_3$ catalyst at the range of temperatures between 473 K and 723 K, the total pressures between $10{\times}10^5Pa$ and $50{\times}10^5Pa$, and the contact times between 0.0125 g-cat. hr/ml-feed and 0.03g-cat. hr/ml-feed. HDN of pyridine and HDO of m-cresol were inhibited by each other and the inhibition effect of HDO by pyridine is higher than that of HDN by m-cresol. But reactivity of m-cresol is higher than that of pyridine. The rate equations of pyridine and m-cresol were given to be ${\gamma}_{HDN}=k_{HDN}{\cdot}K_pC_p/(1+K_cC_c+K_pC_p)$ and ${\gamma}_{HDO}=k_{HDO}{\cdot}K_cC_c/(1+K_cC_c+K_pC_p)$ in terms of Langmuir-Hinshellwood-Hougen-Watson model. At each temperature, reaction rate constants and adsorption equilibrium constants were determined and activation energies of pyridine HDN and m-cresol HDO are 13.83kcal/mol, respectively and the heat of adsorption are -6.458 and -5.045kcal/mol, respectively.

  • PDF

Sorption of ο-Cresol by Granular Activated Carbon (GAC) and Abiotic Transformation on GAC Surface (입상활성탄에 의한 오르토크레졸(ο-cresol)의 흡착과 비생물학적 변형)

  • 한인섭;김용환
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.87-94
    • /
    • 2004
  • The effects of pretreatment of GAC and dissolved oxygen (DO) on the sorption capacity for ο-cresol were investigated using pretreated GAC under oxic and anoxic conditions. Virgin GAC was used with pretreated GACs by $O_2$, acid and base as sorbents. Sorption capacity of GAC was dependent on the oxygen conditions according to the pretreatment methods. Virgin GAC showed increased sorption capacity when DO was present in the solution, while $O_2$-pretreated GAC did not show any considerable capacity change. Acid- and base-pretreated GACs were relatively more influenced by presence of DO as compared with virgin GAC. Both acid and base-pretreated GACs showed a rapid sorption rate at the initial stage, but as contact time became longer the sorption was slower. Sorbed ο-cresol was extracted with micro-Soxhlet extraction apparatus using the GAC separated from the rate experiments. Within 1 hour both acid and base-pretreated GACs showed the decrease in extraction efficiencies under both oxic and anoxic conditions. After 1 hour such a trend (the increase as contact time was longer) was not observed and showed relatively constant efficiencies of 35∼50%. According to the results of this study $O_2$contacted with GAC before sorption as well as DO present in the solution during sorption could influence the GAC sorption capacity.

Isolation and Characterization of Aerobic Trichloroethylene Cometabolizing Bacterium (호기적 Trichloroethylene 공동대사 세균의 분리 및 특성)

  • 김호성;박근태;손홍주;박성훈;이상준
    • Journal of Environmental Science International
    • /
    • v.10 no.2
    • /
    • pp.99-103
    • /
    • 2001
  • Several microorganisms which degrade phenol and trichloroethylene(TCE) were isolated from the activated sludge of a wastewater treatment plant. Among them, one isolate EL-04J showed the highest degradability and was identified as a Pseudomonas species according to morphological, cultural and biochemical properties. The phenol-induced cells of Pseudomonas EL-04J, which were preincubated in the mineral salts medium containing phenol as a sole carbon source, degraded 90% of 25$\mu$M TCE within 20h. This strain could also utilize some of methylated phenol derivatives (o-cresol, m-cresol and p-cresol) as the sole source of carbon and energy. Cresol-induced cells of Pseudomonas EL-04J also cometabolized TCE.

  • PDF

A Study on the Effects of Various Reaction Conditions on the Blocking Reactions of TDI and MDI in the Preparation of Polyurethane Varnishes (폴리우레탄 절연전선도료 제조시 TDI와 MDI의 Blocking 반응에 미치는 여러가지 반응조건의 영향에 관한 연구)

  • Kwon, Suk-Ky;Park, Nae-Jung;Nam, Yun-Ky
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.308-314
    • /
    • 1997
  • The effects of catalyst and blocking reagents(BR) on the blocking reactions of TDI and MDI in the preparation of polyurethane varnishes have been studied. It was found that certain types of catalysts, such as 1,4-diazabicyclo[2.2.2]octane(DABCO) and tetramethyl guanidine(TMG), were necessary to complete the NCO blocking reactions. Blocking rate of TMG was shown much faster than that of DABCO. Reactivity increased with the increase of TMG concentration, at least to the concentration of 1%. In case of DABCO, the 0.25% concentration of catalyst showed the highest reactivity. In order to study the steric effects of BR on the blocking reactions, phenol, p-cresol, m-cresol, o-cresol, 2,4-xylenol were used as blocking reagents. As expected, BR which has less steric hindrance showed higher reactivity. The increase in BR concentration and reaction temperature increased the productivity of polyurethanes in this reaction system.

  • PDF

In Vitro Effects of Essential Oils from Ostericum koreanum against Antibiotic-Resistant Salmonella spp

  • Shin, Seung-Won
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.765-769
    • /
    • 2005
  • The essential oil fraction of Ostericum koreanum was analyzed by GC-MS. Inhibiting activities of this oil and its main components were tested by the broth dilution assay and disk diffusion test against one antibiotic-susceptible and two resistant strains of Salmonella enteritidis and S. typhimurium, respectively. The GC-MS analysis revealed thirty-four compounds; the main components were $\alpha$-pinene (41.12%), $\rho$-cresol (17.99%) and 4-methylacetophenone (7.90%). The essential oil of O. koreanum and its main components were significantly effective against the tested antibiotic-susceptible strains as well as against the resistant strains of the two Salmonella species, with MICs (minimum inhibitory concentrations) ranging from 2 mg/mL to 16 mg/mL. The anti-Salmonella effects of the oils were dose-dependent on $M\"{u}ller-Hinton$ agar plates in this experiment. Additionally, checkerboard titer test results demonstrated significant combined effects of streptomycin and O. koreanum oil or cresol, one of the main components of this oil, against the two streptomycin resistant strains of S. typhimurium, with FICIs ranging from 0.12 to 0.37.

A Study on the Oxidation Characteristics of p-Cresol on Pt Anode (백금전극(白金電極)에 의한 파라크레졸의 양극전해(陽極電解) 산화특성(酸化特性))

  • Kim, Hong-Soo;Nam, Jeong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.47-53
    • /
    • 1990
  • The electrochemical oxidation behavior of p-cresol on platinum anode had been investigated by cyclic voltammetric method for the variation of concentration, scan rate of potential, temperature and pH of electrolyte. The oxidation potential of p-cresol was dependent on the electrolyte until the pH=11.5, but in basic solution over its, it was held at o.40V(vs. SCE). A diffusion was rate determining step of oxidation as irreversible reaction by the transfer atone electron. The current of peak was proportional to concentration of p-cresol until the 0.1N and optimum concentration was found to be about 0.1N. The activation energy was calculated for 5.8kcal/mol from the plot of log $I_l$ vs. 1/T.

Liquefaction of Wood (II) - Analysis of Liquefied Wood Components - (목재의 용액화 (II) - 액화목재의 성분분석 -)

  • Doh, Geum-Hyun;Kong, Yong-To
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.19-25
    • /
    • 1995
  • This research was carried out to investigate the methods of liquefaction with Pinus koraiensis, and chemical components of the liquefied wood by FT-IR analysis and pyrolysis-GC/MS. Acetylated wood powder was liquefied above 90% in phenol or m-cresol when treated at about 150$^{\circ}C$ for 30min., using some catalysts. Untreated wood powder was liquefied above 90% in phenol or m-cresol when treated at about 200$^{\circ}C$ for 60min., using some catalysts. The results of FTIR analysis, carbohydrates were terribly disintegrated, the other side lignin peaks were occurred in liquefied wood, particulary. The results of pyrolysis-GC/MS, the liquefied wood have clear four peaks, phenol, guaiacol, o-cresol and m-/p-cresol, due to degradation of lignin, particulary.

  • PDF

Investigation of Cure Kinetics and Storage Stability of the o-Cresol Novolac Epoxy Nanocomposites with Pre-intercalated Phenolic Hardeners

  • Hwang, Tae-Yong;Lee, Jae-Wook;Lee, Sang-Min;Nam, Gi-Joon
    • Macromolecular Research
    • /
    • v.17 no.2
    • /
    • pp.121-127
    • /
    • 2009
  • The cure kinetics of the epoxy-layered, silicate nanocomposites were studied by differential scanning calorimetry under isothermal and dynamic conditions. The materials used in this study were o-cresol novolac epoxy resin and phenol novolac hardener, with organically modified layered silicates. Various kinetic parameters, including the reaction order, activation energy, and kinetic rate constants, were investigated, and the storage stability of the epoxy-layered silicate nanocomposites was measured. To synthesize the epoxy-layered silicate nanocomposites, the phenolic hardener underwent pre-intercalation by layered silicate. From the cure kinetics analyses, the organically modified layered silicate decreased the activation energy during cure reaction in the epoxy/phenolic hardener system. In addition, the storage stability of the nanocomposite with the pre-intercalated phenolic hardener was significantly increased compared to that of the nanocomposite with direct mixing of epoxy, phenolic hardener, and layered silicate. This was due to the protective effect of the reaction between onium ions and epoxide groups.