• Title/Summary/Keyword: nyquist plot

Search Result 31, Processing Time 0.036 seconds

The Design of PI Controller Using Saturation Function (포화 함수를 이용한 PI 제어기 설계)

  • Oh, Seung-Rohk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.102-107
    • /
    • 2008
  • We propose an autotuning algorithm for PI controller with unknown plant. The proposed algorithm uses a saturation function and time delay element as a test signal. Since the integral element of PI controller reduces a phase margin in the closed loop system, the closed loop system could be resulted in unstable with PI controller. To avoid unstable in the closed loop system with PI controller, the proposed algorithm identifies one point information in the 3rd quadrant of Nyquist plot with a time delay element. The proposed method improves an accuracy of one point identified information with one saturation function. We demonstrate a performance of the proposed method via a simulation.

Characterization of Photoelectron Behavior of Working Electrodes with the Titanium Dioxide Window Layer in Dye-sensitized Solar Cells

  • Gong, Jaeseok;Choi, Yoonsoo;Lim, Yeongjin;Choi, Hyonkwang;Jeon, Minhyon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.346.1-346.1
    • /
    • 2014
  • Porous nano crystalline $TiO_2$ is currently used as a working electrode in a dye-sensitized solar cell (DSSC). The conventional working electrode is comprised of absorption layer (particle size:~20 nm) and scattering layer (particle size:~300 nm). We inserted window layer with 10 nm particle size in order to increase transmittance and specific surface area of $TiO_2$. The electrochemical impedance spectroscope analysis was conducted to analysis characterization of the electronic behavior. The Bode phase plot and Nyquist plot were interpreted to confirm the internal resistance caused by the insertion of window layer and carrier lifetime. The photocurrent that occurred in working electrode, which is caused by rise in specific surface area, increased. Accordingly, it was found that insertion of window layer in the working electrode lead to not only effectively transmitting the light, but also increasing of specific surface area. Therefore, it was concluded that insertion of window layer contributes to high conversion efficiency of DSSCs.

  • PDF

Simulation and Experimental Analysis of Magnetic Levitation Relative Stability for the Flywheel Energy Storage (플라이휠 에너지 저장장치 자기부상 안정성 시뮬레이션 및 실험분석)

  • Park, Byeong-Cheol;Jung, Se-Yong;Han, Sang-Chul;Lee, Jeong-Phil;Han, Young-Hee;Park, Byung-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1605-1610
    • /
    • 2010
  • In this paper, the relative stability of magnetic bearing system for the flywheel energy storage is evaluated using both simulation and experimental analysis. We make the simulation model for the magnetic bearing flywheel system using the rigid body shaft model. According to international standard ISO 14839-3, We experimentally analyzed the relative stability of magnetic bearing system. Additionally using both the simulation model and experimental tests, Phase margin and Gain margin is acquired through Nyquist plot.

Performance Analysis of Polymer Electrolyte Membrane Fuel Cell by AC Impedance Measurement (교류 임피던스 측정법을 이용한 고분자 전해질 연료전지의 성능특성 분석)

  • Seo, Sang-Hern;Lee, Chang-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.4
    • /
    • pp.283-290
    • /
    • 2009
  • This study focuses on the performance characteristics of polymer electrolyte membrane fuel cell (PEMFC) using the AC impedance technique. The experiment was carried out to investigate the optimal operating conditions of PEMFC such as cell temperature, flow rate, humidified temperature and back-pressure. The fuel cell performance was analyzed by DC electronic-loader with constant voltage mode and expressed by voltage-current density. Additionally, AC impedance was measured to analysis of ohmic and activation loss and expressed by Nyquist plot. The results showed that the cell performance increased with increase of cell temperature, air flow rate, humidified temperature and backpressure. Also, the activation loss decreased as the increase of cell temperature, air flow rate, humidified temperature and backpressure.

Conversion of a Constant Phase Element to an Equivalent Capacitor

  • Chang, Byoung-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.318-321
    • /
    • 2020
  • Here I present a formula which converts a constant phase element (CPE) to its equivalent capacitor. Electrochemical impedance spectroscopy is capable of resolving a complex electrochemical processes into its faradaic and non-faradaic elements, and the non-faradaic process is frequently described as a CPE in place of a capacitor due to the non-ideality. Being described as a capacitor, the non-faradaic element provides information by its capacitance, but a CPE cannot provide a physical meaning. In order to solve the problem, the CPE has been dealt with as an equivalent capacitor of which the capacitance provides practical information. Succeeding the two methods previously suggested, a new conversion method is suggested in this report. While the previous ones manipulate only the CPE, the new method takes both the CPE and its related resistor into account for conversion. By comparing the results obtained by the three methods, we learn that the results are nearly the same within tolerable ranges, and conclude that any of the method choices is acceptable depending on the conditions of the system of interest.

Corrosion Evaluation of Epoxy-Coated Bars by Electrochemical Impedance Spectroscopy

  • Choi, Oan-Chul;Park, Young-Su;Ryu, Hyung-Yun
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.99-105
    • /
    • 2008
  • Southern exposure test specimens were used to evaluate corrosion performance of epoxy-coated reinforcing bars in chloride contaminated concrete by electrochemical impedance spectroscopy method. The test specimens with conventional bars, epoxy-coated bars and corrosion inhibitors were subjected 48 weekly cycles of ponding with sodium chloride solution and drying. The polarization resistance obtained from the Nyquist plot was the key parameter to characterize the degree of reinforcement corrosion. The impedance spectra of specimens with epoxy-coated bars are mainly governed by the arc of the interfacial film and the resistance against the charge transfer through the coating is an order of magnitude higher than that of the reference steel bars. Test results show good performance of epoxy-coated bars, although the coatings had holes simulating partial damage, and the effectiveness of corrosion-inhibiting additives. The corrosion rate obtained from the impedance spectroscopy method is equivalent to those determined by the linear polarization method for estimating the rate of corrosion of reinforcing steel in concrete structures.

The Design of PI controller using a saturation function in frequency domain (포화함수를 이용한 주파수영역에서의 PI제어기설계)

  • Oh, Seung-Rohk
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.326-328
    • /
    • 2009
  • we an autotuning algorithm for PI controller with unknown plant. The proposed algorithm uses a saturation function and time delay element as a test signal. Since the integral element of PI controller reduces a phase margin and amplitude margin in the closed loop system, the closed loop system could be resulted in unstable with PI controller, To avoid unstable in the closed loop system with PI controller, the proposed algorithm identifies one point information in the 3rd quadrant of Nyquist plot with a time delay element. The proposed method improves an accuracy of one point identified information with one saturation function.

  • PDF

Proton Conductivity Measurement Using A.C. Impedance Spectroscopy for Proton Exchange Membrane

  • Lee, Chang Hyun;Park, Ho Bum;Lee, Young Moo
    • Korean Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • The impedance and the subsequent proton conductivity of Nafion$\^$/ membranes as standard samples were measured and compared via the two-probe method and the four-probe method using the prepared impedance measurement system. The different impedance behavior for the same membrane was observed at the fully hydrated state in the Nyquist impedance plot. The effect of the humidity and the temperature on the proton conduction through a membrane was investigated and compared with two different cell configurations.

An Experimental Study on Corrosion Behavior in Steel of Concrete Applied with Arc Metal Spray Method Surface Treatment Technology Using EIS (EIS를 이용한 아크 금속용사 표면처리기법이 적용된 강재의 콘크리트 내 부식 거동에 관한 실험적 연구)

  • Yoon, Chang-Bok;Park, Jang hyun;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.87-95
    • /
    • 2020
  • As an experimental study on the corrosion behavior of steel materials to which ATMS method using EIS was applied in concrete, immersion of Ca(OH)2 saturated aqueous solution and NaCl aqueous solution simulating the environment inside concrete The corrosion behavior was tested. The equivalent circuit was derived through the analysis of the Nyquist plot, and the interfacial resistance and the polarization resistance of the Ca(OH)2 aqueous solution were compared, and Al ATMS was the best interfacial resistance and Zn ATMS was the best polarization resistance. After burying ATMS steel material of cement mortar, the initial immersion impedance measurement value was the highest in the Zn ATMS test body in the impedance measurement by the immersion time by immersing it in the NaCl aqueous solution. Al ATMS test piece has the highest impedance and is highly reliable. This is because Al, which has a high ionization tendency, is continuously oxidized in a strong alkaline environment to form a film and protect the steel from permeation of chlorine ions.

Oxide Nanolayers Grown on New Ternary Ti Based Alloy Surface by Galvanic Anodizing-Characteristics and Anticorrosive Properties

  • Calderon Moreno, J.M.;Drob, P.;Vasilescu, C.;Drob, S.I.;Popa, M.;Vasilescu, E.
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.257-264
    • /
    • 2017
  • Film of new Ti-15Zr-5Nb alloy formed during galvanic anodizing in orthophosphoric acid solution was characterized by optical microscope, scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and Raman micro-spectroscopy. Its anticorrosive properties were determined by electrochemical techniques. The film had a layer with nanotube-like porosity with diameters in 500-1000 nm range. The nano layer contained significant amounts of P and O as well as alloying element. Additionally, Raman micro-spectroscopy identified oxygen as oxygen ion in $TiO_2$ anatase and phosphorous as $P_2O_7{^{4-}}$ ion in phosphotitanate compound. All potentiodynamic polarization curves in artificial Carter-Brugirard saliva with pH values (pH= 3.96, 7.84, and 9.11) depending on the addition of 0.05M NaF revealed nobler behavior of anodized alloy and higher polarization resistance indicating the film is thicker and more compact nanolayer. Lower corrosion rates of the anodized alloy reduced toxicity due to less released ions into saliva. Bigger curvature radii in Nyquist plot and higher phase angle in Bode plot for the anodized alloy ascertain a thicker, more protective, insulating nanolayer existing on the anodized alloy. Additionally, ESI results indicate anodized film consists of an inner, compact, barrier, layer and an outer, less protective, porous layer.