• 제목/요약/키워드: nylon fiber

검색결과 333건 처리시간 0.025초

Influence of Silane Coupling Agents on the Interlaminar and Thermal Properties of Woven Glass Fabric/Nylon 6 Composites

  • Donghwan Cho;Yun, Suk-Hyang;Kim, Junkyung;Soonho Lim;Park, Min;Lee, Sang-Soo;Lee, Geon--Woong
    • Macromolecular Research
    • /
    • 제12권1호
    • /
    • pp.119-126
    • /
    • 2004
  • In this study, the influence of silane coupling agents, featuring different organo-functional groups on the interlaminar and thermal properties of woven glass fabric-reinforced nylon 6 composites, has been by means of short-beam shear tests, dynamic mechanical analysis, scanning electron microscopy, and thermogravimetric analysis. The results indicate that the fiber-matrix interfacial characteristics obtained using the different analytical methods agree well with each other. The interlaminar shear strengths (ILSS) of glass fabric/nylon 6 composites sized with various silane coupling agents are significantly improved in comparison with that of the composite sized commercially. ILSS of the composites increases in the order: Z-6076 with chloropropyl groups in the silanes > Z-6030 with methacrylate groups> Z-6020 with diamine groups; this trend is similar to that of results found in an earlier study of interfacial shear strength. The dynamic mechanical properties, the fracture surface observations, and the thermal stability also support the interfacial results. The improvement of the interfacial properties may be ascribed to the different chemical reactivities of the reactive amino end groups of nylon 6 and the organo-functional groups located at the ends of the silane chains, which results from the increased chemical reactivity in order chloropropyl > methacrylate > diamine.

탄소섬유의 사이징처리가 탄소섬유/나일론6 복합재료의 기계적 계면 특성에 미치는 영향 (Effects of Sizing Treatment of Carbon Fibers on Mechanical Interfacial Properties of Nylon 6 Matrix Composites)

  • 박수진;최웅기;김병주;민병각;배경민
    • Elastomers and Composites
    • /
    • 제45권1호
    • /
    • pp.2-6
    • /
    • 2010
  • 탄소섬유/나일론 수지 복합재료의 계면결합력의 향상을 위해 폴리아크릴로니트릴(PAN)계 탄소섬유의 표면에 실란계, 설파이드계, 이미드계 계면결합제를 이용해서 사이징 처리를 수행하였으며, 사이징 처리된 탄소섬유의 젖음성과 표면자유에너지는 접촉각을 통해 확인하였다. 사이징 처리되어 제조된 복합재료의 기계적 계면물성은 임계응력세기인자를 통하여 확인하였으며, 파단실험 후 파단면은 주사전자현미경을 통해 관찰하였다. 실험결과 실란계로 사이징 처리된 탄소섬유가 다른 사이징 처리에 비해 표면자유에너지가 큰 것을 접촉각 측정을 통해 관찰하였다. 한편 사이징 처리된 탄소섬유 강화 나일론 복합재의 경우 미처리 탄소섬유를 이용한 복합재에 비해 높은 기계적 계면강도를 보였다. 이러한 결과는 섬유의 표면자유에너지가 탄소섬유와 나일론6 기지 사이의 계면결합력의 증대를 유도하여 복합재료의 기계적 계면강도가 증가된 것으로 판단된다.

도로 기층 재료로 활용하기 위한 섬유보강 빈배합 콘크리트에 플라이애시와 리젝트애시를 사용한 경우 역학적 특성 및 섬유 분산성 분석 (Evaluation of Mechanical Properties and Fiber Dispersing Characteristics of Fiber Reinforced Lean Concrete Using Fly Ash and Reject Ash)

  • 장영재;박철우;박영환;유평준;정우태;김용재
    • 한국도로학회논문집
    • /
    • 제15권1호
    • /
    • pp.11-21
    • /
    • 2013
  • PURPOSES: As pavement generally provides service shorter than an expected life cycle, maintenance cost increases gradually. In order to help extending the service life and reduce maintenance cost, a new multi-functional composite pavement system is being developed in Korea. METHODS: This study is a part to develop the multi-functional composite pavement and is to investigate the mechanical performances of fiber-reinforced lean concrete for pavement subbase. The inherent problem of fiber reinforced concrete is dispersion of fibers in concrete mix. This study additionally evaluated fiber dispersion characteristics with respect to different fiber types. RESULTS: From the test results, the compressive strengths of the concretes satisfied the required limit of 5MPa at 7days. The standard deviation of the measured number of fibers were lower in the order of nylon, steel fiber and polypropylene. CONCLUSIONS: Reject ash was shown to be satisfactory as a replacement material to Portland cement in lean concrete base. The fiber volume fraction is suggested to be 0.4% even though the fracture toughness did not vary significantly with respect to fiber types. However, fracture energy absorbed up to complete failure increased with the increased fiber volume fraction increment.

키토산처리(處理) 면포(綿布)와 나일론포(布)의 염색성(染色性)에 관(觀)한 연구(硏究) - 소목(蘇木), 코치닐, 치자(梔子)를 중심(中心)으로 - (A Study on the Dyeing of Chitosan treated Cotton and Nylon Fabrics - Caesalpinia sappan, Cochineal, Gardenia jasminoides -)

  • 전동원;김종준;이정민;신혜선
    • 패션비즈니스
    • /
    • 제7권2호
    • /
    • pp.156-164
    • /
    • 2003
  • It has been known that the natural colorants exhibit good dye-uptake toward cotton, silk, and wool fibers, while they do poorly toward synthetic fibers. This study utilizes the chitosan treatment in order to improve the dye-uptake for the natural fibers and to enable the synthetic fibers, whose dye-uptake levels are low, show better affinity toward the natural colorants. Since chitosan has $-NH_2$ group and -OH group in the structure, the dyeability of the fabric will be improved when the fabric is treated with the chitosan. Cotton fabric as one of the natural fiber fabrics and nylon fabric as one of the synthetic fiber fabrics were selected for this study. 1. In case of cotton fabric, the chiosan treatment takes effect for the Caesalpinia sappan and cochineal, resulting in remarkable ${\Delta}E$ increase after dyeing. Chitosan helps in developing dark shade by increasing the uptake of the Caesalpinia sappan and cochineal. It does not, however, participate in the developing of the specific color as does a metallic mordant. 2. In case of dyeing cotton fabric with Gardenia jasminoides, the effect of the treatment with mordant and chitosan is not very pronounced. It is thought that the Gardenia jasminoides uptake is accomplished in a direct manner in the cellulose chains without the aid of mordant. 3. Air-permeability is decreased when the non-mordanted and non-chitosan treated cotton fabric is dyed with Caesalpinia sappan, cochineal, and Gardenia jasminoides. 4. In case of nylon fabric, premordanting and chitosan treatments are not highly effective in promoting the dye-uptake.

직접블렌딩 기술과 접착제 조성이 고무복합체 물성에 미치는 영향 (Adhesion Properties of Rubber Composite with Direct Blending Technique and Adhesive Composition)

  • 이성재;장영욱;정경호
    • Elastomers and Composites
    • /
    • 제34권3호
    • /
    • pp.253-261
    • /
    • 1999
  • 조성이 다른 접착제를 포함한 고무혼합물의 가교특성은 접착제 조성에서 탄닌이 많이 포함될수록 스코치 시간은 증가하였으며 경화속도는 다소 감소하는 것으로 보아 탄닌 분자의 크기와 형태 때문에 초기 가교반응을 지연시킴과 동시에 경화속도 역시 다소 지연됨을 알 수 있었다. 이들 고무혼합물의 인장물성 역시 탄닌이 많이 함유된 접착제를 고무에 혼합할수록 고무혼합물의 인장강도는 다소 감소하였다. 이는 탄닌이 많이 함유될수록 가교반응을 지연시켜 전체 고무혼합물의 가교도가 감소하기 때문일 것으로 사료되었다. 또한 접착제의 조성이 고무-섬유 접착에 미치는 영향을 보강코드로서 나일론 610 모노필라멘트를 사용하여 TCAT(Tire Cord Adhesion Test) 방법으로 조사하였다. 레소시놀-탄닌-포름알데히드-라텍스(RTFL) 접착제 조성에서 레소시놀 1 mole당 포름알데히드의 mole 비가 증가할수록 접착력은 증가하였고 대략 포름알데히드 5mole 이상에서 최적의 접착력을 나타냈다. 보강코드상의 접착제 수확량(DPU) 역시 최종 접착력에 영향을 미치지만, 나일론 610 모노필라멘트의 경우는 접착제 조성에 따른 DPU가 거의 일정하여 접착력의 차이는 접착제의 조성 중 탄닌의 거동 때문으로 해석될 수 있었다.

  • PDF

저온 플라즈마 처리한 Nylon/PU 혼방발수직물의 편면친수효과 (Effects of the One side Hydrophilicity for Nylon/PU Water Repellent Blended Fabric Treated with Low Temperature Plasma Treatment)

  • 마재혁;손경태;구강
    • 한국의류산업학회지
    • /
    • 제15권3호
    • /
    • pp.461-466
    • /
    • 2013
  • Synthetic fiber materials were developed due the desire of consumers for high-quality, high-performance and comfort. A high functionality of synthetic fiber can be obtained through surface treatment that can improve hydrophilic properties, color depth after dyeing and adhesion properties. These advantages create added-value. Hydrophobic properties are an important feature to create added-value (such as hydrophilic properties). One side processing is a method of imparting to contrary function on the front and rear side. In this study, fluorine-coated Nylon/PU blended fabric was treated on only one side with a low-temperature plasma treatment; subsequently, the contact angles decreased by increasing the time and intensity of the plasma treatment. The contact angle of the untreated surface and the treated surface was different. It a showed a difference in the properties of both surfaces. Tensile strength and stiffness decreased by increasing the time and intensity of the plasma treatment. However, plasma treatment did not significantly change the tensile strength and stiffness on both surfaces of the fabric. SEM photographs showed the surface of fluorine-coated fabric and the etching surface by using plasma treatment on the fabric. Plasma treatment was confirmed not to affect the physical properties of the fabric.

FDM 방식을 활용한 3D 프린팅 복합직물의 박리강력 측정 연구 (Study on Peel Strength Measurement of 3D Printing Composite Fabric by Using FDM)

  • 한유정;김종준
    • 패션비즈니스
    • /
    • 제23권2호
    • /
    • pp.77-88
    • /
    • 2019
  • One way of appling 3D printing to garments is through the combination of 3D polymer filaments in textile fabrics. it is essential to understand the interface between the polymer and the 3D composite fabric in order to enhance the adhesion strength between the polymers and the peeling strength between the fabric and the polymer. In this study, the adhesion of composite printed specimens using a combination of fabric and polymers for 3D printing was investigated, and also the change in adhesion was investigated after the composite fabric printed with polymers was subjected to constant pressure. Through this process, the aims to help develop and utilize 3D printing textures by providing basic data to enhance durability of 3D printing composite fabrics. The measure of the peeling strength of the composite fabric prepared by printing on a fabric using PLA, TPU, Nylon polymer was obtained as follows; TPU polymer for 3D printing showed significantly higher peel strength than polymers of composite fabric using PLA and Nylon polymer. In the case of TPU polymer, the adhesive was crosslinked because of the reaction between polyurethane and water on the surface of the fabric, thus increasing the adhesion. It could be observed that the adhesion between the polymer and the fiber is determined more by the mechanical effect rather than by its chemical composition. To achieve efficient bonding of the fibers, it is possible to modify the fiber surface mechanically and chemically, and consider the deposition process in terms of temperature, pressure and build density.

섬유 종류에 따른 디지털 텍스타일 프린팅의 발색성 비교 분석 (Coloring Analysis of Digital Textile Printing According to the Type of Fiber)

  • 이연순;엄지은
    • 한국의상디자인학회지
    • /
    • 제12권2호
    • /
    • pp.67-73
    • /
    • 2010
  • Whole process of textile printing is made by computer and it remarkably improves environment problem. This digital textile printing is becoming next step environment friendly textile printing method. But, still now range of textile possible for digital textile printing is limited, and also color analysis according to fiber types is not completed. The ink printed on the fabrics through DTP printer can be absorbed and fixed into textile without any blots by pre-treatment using suitable media solution for fabrics types. The chemical formulation of media solution used in the pre-treatment process varies according to the types of textiles and inks for DTP products. First, I studied reference books or articles about color analysis of digital textile printing. Second, I recorded pre-process, printing, post-process and coloring of silk, wool, nylon at same condition. After that, I analyzed $L^*\;a^*\;b^*$, Total K/S, ${\Delta}E$ and studied color intensity and coloring. According to this study, I suggested particular textile special for coloring and manual for affective coloring control. It showed that the performance of the digital printing on the Silk, Wool and Nylon blend fabrics treated by the media solution developed in this study was better than the one treated by the previous media solution for each single inks.

  • PDF

섬유의 종류와 조합에 따른 직물의 수분전달 특성에 관한 연구 (A Study on the Effect of Fiber Type on the Water Vapor Transport Properties)

  • 나미희;김은애
    • 한국의류학회지
    • /
    • 제14권3호
    • /
    • pp.229-240
    • /
    • 1990
  • The purpose of this study was to investigate the effect of hydrophilicity of the fiber on the water vapor transport properties of the fabric by using double layered fabrics of natural and synthetic fibers such as cotton, wool, nylon, dacron, orlon and polypropylene. Wickability and absorption rate were measured to determine the absorbancy of the fabrics. Dynamic and steady state water vapor transport properties were measured by cobaltous chloride method and evaporation method, respectively. Absorption was in the order of orlon> cotton > wool > nylon > polypropylene > dacron. Dynamic surface wetness of synthetic fabrics were faster than that of natural fabrics. For the double layered fabrics, higher water vapor transport was resulted when the natural fabric was exposed to lower vapor pressure and synthetic fabric was exposed to higher vapor pressure than when the fabrics were layered the other way around. Opposite result was obtained for orlon, which suggested that when the fabric of high absorbancy is exposed to the environment and lower absorbancy is to the skin, higher water vapor transpont could be resulted.

  • PDF

유기섬유 복합 혼입 고성능 콘크리트의 기초적 특성 (Basic Characteristics of High Performance Concrete Mixing Organic Fiber)

  • 박병관;유지영;이정아;김성일;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2008년도 춘계 학술논문 발표대회
    • /
    • pp.87-91
    • /
    • 2008
  • The study examined fire resistance of concrete followed by change of mixed rate in PP and NY composite fiber and the results were as follows. In the event of fluidity in concrete not set, plane satisfied 600±100, its target slump flow, and fluidity was reduced as organic fiber's mixed rate was increased. Air amount satisfied 3.0±1.0, its target air amount, and didn't have distinct differences in reduction and increase according to organic fiber's kind and change of its mixed rate. However, it had a tendency that fluidity was reduced as the mixed rate was increased. In characteristics of hardening concrete, the 28th day compressive strength followed by organic fiber's kind and change of its mixed rate didn't have a lot of differences and satisfied high strength scope as about 70MPa. In spalling characteristics after fire resistance test, spalling was happened in non-mixture, plane combination, and P1N0. In other combinations, spalling resistance was happened. The relic compressive strength rate was 56%, the best condition, in P3N1(PP0.03%, NY0.01% compositeness) mixing PP fiber with NY fiber at once.

  • PDF