• Title/Summary/Keyword: nylon 6 fiber

Search Result 134, Processing Time 0.029 seconds

A Study on the Mechanical and Physical Properties of Sawdustboard combined with Plastic Chip (플라스틱칩 결체(結締) 톱밥보드의 기계적(機械的) 및 물리적(物理的) 성질(性質)에 관(關)한 연구(硏究))

  • Lee, Phil-Woo;Suh, Jin-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.44-55
    • /
    • 1987
  • In order to study the effect of sawdustboard combined with plastic chips, 0.5mm($T_1$), 1mm($T_2$), 1.4mm($T_3$) thick nylon fiber. polypropylene rope fiber(RP), and 0.23mm thick moth-proof polypropylene net fiber(NP) were cut into 0.5, 1, 2cm long plastic chips. Thereafter, sawdustboard combined with plastic chips prepared as the above and plastic non-combined sawdustboard(control) were manufactured into 3 types of one-, two-, and three layer with 5 or 10% combination level. By the discussions and results at this study, the significant conclusions of mechanical and physical properties were summarized as follows: 1. The MORs were shown in the order of 3 layer> 2 layer> 1 layer among plastic non-combined boards, and $T_3$ < $T_2$ < $T_1$ < RP (NP(5%) < NP(l0%) among plastic combined boards. In 2cm long plastic chip in 1 layer board, the highest strength through all the composition was recognized. 1 layer board showing the lower strength with 0.5cm plastic chip rendered to the bending strength improvement by 2 or 3 layer board composition. On the other hand, 2 or 3 layer combined with 1, 2cm long polypropylene net fiber chips incurred MOR's conspicuous decrease requiring optimum plastic chip combined level and consideration to combined type. 2. MOE in plastic non-combined 3 layer board exhibited sandwich construction effect by higher resin content application to surface layer in the order of 3layer>1layer>2layer with the highest stiffness of the board combined with polypropylene chip, while nylon chip-combined board had little difference from plastic non-combined board. In relevant to length and layer effect, 3 layer board combined with the 0.5cm long polypropylene net fiber chip in 5% and 10% combined level presented 34-43% and 44-76% stiffness increase against plastic non-combined board(control), respectively. Moreover, in 1 layer board, 30% stiffness increase with 10% against 5% combined level in the 1 and 2cm long polypropylene net fiber chip was obtained. 3. Stress at proportional limit(Spl) showing the fiber relationship (r: 0.81-0.97) between MOR presented in the order of 1 layer<2 layer<3 layer in plastic non-combined board. Correspondingly, combined effect by layer and plastic chip length was similar to MOR's. 4. Differently from previous properties(MOR, MOE, Spl). work to maximum load(Wml) of 2 layer board approached to that of 3 layer board. Conforming the above phenomenon. 2 layer combined with 0.5cm long polypropylene net fiber chip kept the greater work than 1 layer. The polypropylene combined board superior to nylon -and plastic non - combined board seemed to have greater anti - failing capacity. 5. Internal bond strength(IB), in contrast to MOR's tendency. showed in the order of T1

  • PDF

Effect of Shearing on Crystallization Behavior of Nylon 6/Silver Nanocomposites (전단조건이 나일론 6/은 나노복합소재의 결정화거동에 미치는 영향)

  • Chae, Dong-Wook;Oh, Seong-Geun;Kim, Byoung-Chul
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.321-324
    • /
    • 2002
  • Recently, organic-inorganic nanocomposites have attracted great interest from researchers since they frequently exhibit unexpected hybrid properties synergistically derived from two components[1]. The addition of highly dispersed inorganic nano-sized fillers permits improvement of certain properties of polymers as compared with conventional particulate composites; increase of modulus and strength, improved barrier properties, increase in solvent and heat resistance, and good optical properties[2]. (omitted)

  • PDF

Dyeing and Physical Properties of Nylon 6 Ultramicrofiber (초극세 나일론 6 섬유의 염색성과 물성)

  • 정동석;이두환;이문철
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.75-78
    • /
    • 2001
  • 폴리에스테르나 나일론의 세섬도 섬유를 사용한 소재가 실크와 같은 외관, 유연한 태 등의 감각적으로 우수한 특성을 가지기 때문에 최근에 섬유업계에서 큰 관심을 모으고 있다 이와 같은 세섬도 섬유는 부가가치를 높이기 위해 통상보다 복잡한 마무리 가공이 필요하며 염색가공에 있어서도 일반사 나일론보다 그 염색거동이나 견뢰도에 있어서 보다 엄격한 염료나 약품의 선택이 중요하다. (중략)

  • PDF

Heat Treatment and Dyeing Properties of Nylon 6 Ultramicrofiber (초극세 나일론 6 섬유의 열처리 및 염색성)

  • 정동석;이두환;이문철
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.79-82
    • /
    • 2001
  • 합성섬유 중에서는 폴리에스테르 다음으로 많이 생산되는 나일론 섬유는 최근에는 새로운 용도로서 극세 혹은 초극세 나일론섬유를 제조하여, 신감성, 고부가가치를 부여하는 차별화 상품으로서 이용을 개발ㆍ검토하고 있다. 이러한 세섬도 섬유를 사용한 소재가 폴리에스테르(PET)의 경우에는 형태 안정화를 위해 열처리를 실시하는데, 나일론의 경우도 공정 중에서 다양한 열의 영향을 받음으로써 염색성이나 화학적 성질에 변화가 생긴다. (중략)

  • PDF

Application of Nylon Fiber for Performance Improvement of Recycled Coarse Aggregate Concrete (순환 굵은골재 사용 콘크리트의 성능향상을 위한 나일론 섬유의 적용성 연구)

  • Lee, Seung-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.785-792
    • /
    • 2017
  • In recent times, the lack of good quality natural aggregate has led to the alternative use of recycled aggregate. However, the adhered mortars in recycled aggregate lower the performance of the concrete, such as by reducing its strength and causing deterioration and cracking. In this study, the effects of nylon fiber (NF) on the mechanical and durable performance of recycled coarse aggregate concrete (RAC) were experimentally examined. Concrete specimens with natural coarse aggregate (NA) or RA were produced by adding 0, 0.6 and $1.2kg/m^3$ of NF. Various mechanical properties and the durability of the RAC were measured and compared with those of the NAC. In addition, in order to observe the hydrates and ITZ, SEM observations were made of the 28-day concrete samples. From the test results, as expected, it was found that the RAC exhibited lower performance than the NAC. However, the addition of NF to the concrete was effective in significantly enhancing the performance of the RAC due to the bridge effect of the NF.

Influence of Silane Coupling Agents on the Interlaminar and Thermal Properties of Woven Glass Fabric/Nylon 6 Composites

  • Donghwan Cho;Yun, Suk-Hyang;Kim, Junkyung;Soonho Lim;Park, Min;Lee, Sang-Soo;Lee, Geon--Woong
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.119-126
    • /
    • 2004
  • In this study, the influence of silane coupling agents, featuring different organo-functional groups on the interlaminar and thermal properties of woven glass fabric-reinforced nylon 6 composites, has been by means of short-beam shear tests, dynamic mechanical analysis, scanning electron microscopy, and thermogravimetric analysis. The results indicate that the fiber-matrix interfacial characteristics obtained using the different analytical methods agree well with each other. The interlaminar shear strengths (ILSS) of glass fabric/nylon 6 composites sized with various silane coupling agents are significantly improved in comparison with that of the composite sized commercially. ILSS of the composites increases in the order: Z-6076 with chloropropyl groups in the silanes > Z-6030 with methacrylate groups> Z-6020 with diamine groups; this trend is similar to that of results found in an earlier study of interfacial shear strength. The dynamic mechanical properties, the fracture surface observations, and the thermal stability also support the interfacial results. The improvement of the interfacial properties may be ascribed to the different chemical reactivities of the reactive amino end groups of nylon 6 and the organo-functional groups located at the ends of the silane chains, which results from the increased chemical reactivity in order chloropropyl > methacrylate > diamine.

Decolorization of Aqueous Caprolactam Solution by Anion-exchange Resins

  • Yuan Zhen;Yu Ping;Luo Yunbai
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.112-116
    • /
    • 2006
  • Caprolactam is the most important raw material for making Nylon 6 fibers and its quality directly determines the quality of Nylon. So it is necessary to study the techniques and methods to remove the colorful impurities from caprolactam. In this paper, the decolorization of caprolactam aqueous solution by anion exchange resins was studied and the decoloring abilities of five commercial resins were investigated. The regeneration of the resins was also studied, too. This study shows that the resin AMTX202 have excellent decoloring ability in the column experiment and that the decoloring efficiency is correlated with the volume of resins packed and is slightly affected by the flow rate and regenerating times. The fact that the resins can be regenerated and reused without affecting the efficiency of decolorization will decrease the cost of the treatment and operation in the industry. The adsorption of colored compounds with anion exchange resins in the packed columns seems to be technically feasible.

Characterization of Nylon 6-Based Polypyrrole Composite Fabrics for EMI Shielding (전자파 차폐용 나일론 6-폴리피롤 복합직물의 특성)

  • Jang, Soon-Ho;Jeong, Sung-Hoon;Byun, Sung-Weon;Lee, Jun-Young;Joo, Jin-Soo;Kim, Seong-Hun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.191-194
    • /
    • 2001
  • Among the many electrically conducting materials, Polypyrrole (PPy) is one of the most promising, intrinsically conducting polymers (ICP) due to its high conductivity, oxygen resistant and good environmental stability. To enhance the mechanical properties, the researchers have studied the polymer-textile composites. These composites can provide the both excellent physical properties and electrical conductivity. (omitted)

  • PDF

An Evaluation of Flexural Behavior of Fume Pipe Repaired by Hybrid Concrete Repair Materials (하이브리드 콘크리트 보수재료로 보수된 흄관의 휨 거동 평가)

  • Yoo, Sung Won;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.92-98
    • /
    • 2019
  • In this study, we developed a repair material incorporating PVA powder resin and nylon fiber into cemented carbide used in the existing field to improve adhesion performance and water tightness with existing concrete. Flexural behavior evaluation was performed. The main experimental variables were PVA powder resin, nylon fiber mixing rate and damage type, and performance tests were conducted to evaluate compressive strength and flexural behavior after repairing materials. It was found that all formulations fully satisfied the required performance of the repair material. The flexural strength test results of the repaired tube specimens showed that the performance of the repaired materials was maximized when the nylon fiber was added and the PVA powder was added in an appropriate amount. The flexural behavior of all the specimens showed the flexural behavior of the structural members with a low rebar ratio, suggesting that the amount of iron wire in the domestic fume pipe was somewhat insufficient. That is, it was confirmed that the amount of reinforcement of the steel wire was somewhat small, so that the concrete was cracked before the behavior of the concrete and the steel wire reached the extreme state, and the concrete was immediately destroyed beyond the tensile strength of the concrete.

Study on the physical properties of nylon66/glass fiber composites as a function of extrusion number (나일론66/유리섬유 복합체의 압출횟수에 따른 특성 연구)

  • Lee, Bom Yi;Kim, Youn Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3990-3996
    • /
    • 2014
  • Because the physical properties can be decreased when a Nylon 66/glass fiber composite is injected into a mold over $300^{\circ}C$, a systematic study of the thermal history in the case of re-use is needed. Nylon 66/glass fiber extrudates as a function of the extrusion number were prepared using a twin screw extruder at 305/290/273/268/265/$260^{\circ}C$. The chemical structure, thermal properties, melt index, crystal structure, Izod impact strength, and rheological properties were measured by Fourier transform infra-red (FT-IR), melt indexer, DSC, TGA, XRD, Izod impact tester, and dynamic rheometer. The FT-IR spectra indicated that the number of extrusions did not affect the chemical structure. The decrease in molecular weight with increasing extrusion number was confirmed by the melt index and the complex viscosity of extrudates. Based on the DSC and TGA results, the thermal history had no effect on the melting temperature, regardless of the number of extrusions, but the degradation temperature decreased up to $20^{\circ}C$ with increasing extrusion number. The Izod impact strengths of the extrudates were found to decrease with increasing extrusion number. No structural change after extrusion was also confirmed because there was no change in the slope and shape of the G'-G" plot.