• 제목/요약/키워드: nylon 4

Search Result 502, Processing Time 0.028 seconds

Durability Evaluation of Tunnel Lining Concrete Reinforced with Nylon Fiber (나일론섬유보강 터널 라이닝 콘크리트의 내구성능 평가)

  • Jeon, Joong-Kyu;You, Jin-O;Moon, Jae-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.487-493
    • /
    • 2008
  • Tunnel structures are widely used for transportations in mountains areas. To shorten the construction period and to cut down the construction expenditure, a construction technique that a tunnel excavation process and a tunnel lining process are simultaneously performed is often applied in the field. However, due to the vibration and impact caused by excavation process, cracking and deterioration of tunnel lining concrete could happen. This research experimentally investigated the effective role of the usages of blended cement and recently developed nylon fibers for tunnel lining concrete. It has been observed that both nylon fibers and blended cement improve the durability and physical properties of concrete.

Thermal Characteristics Simulation with Detecting Temperature for the Wearable Nylon-Yarn NOx Gas Sensors (웨어러블용 Nylon-Yarn NOx 가스 센서의 검출 온도 변화에 따른 열 특성 시뮬레이션)

  • Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.321-325
    • /
    • 2020
  • Atmospheric environmental problems have a major impact on human health and lifestyle. In humans, inhalation of nitrogen oxides causes respiratory diseases, such as bronchitis. In this paper, thermal analysis of a gas sensor was carried out to design and fabricate a wearable nylon-yarn gas sensor for the detection of NOx gas. In the thermal analysis method, the thermal diffusion process was analyzed while operating the sensors at 40 and 60℃ to secure a temperature range that does not cause thermal runaway due to temperature in the operating environment. Thermal diffusion analysis was performed using the COMSOL software. The thermal analysis results could be useful for analyzing gas adsorption and desorption, as well as the design of gas sensors. The thermal energy diffusion rate increased slightly from 10.05 to 10.1 K/mm as the sensor temperature increased from 40 to 60℃. It was concluded that the sensor could be operated in this temperature range without thermal breakdown.

Effects of Storage Temperature and Materials on Maintenance of Quality of Solidago virgaurea spp. gigantea in Modified Atmosphere Packaging (MAP 포장재의 종류와 온도가 울릉미역취의 품질에 미치는 영향)

  • Choi, Mal-Gum;Chung, Hun-Sik;Moon, Kwang-Deog
    • Food Science and Preservation
    • /
    • v.15 no.6
    • /
    • pp.804-809
    • /
    • 2008
  • Modified atmosphere packaging (MAP) was assessed in terms of extending the shelf life of Solidago virgaurea spp. gigantea. In June 2005 Solidago virgaurea spp. gigantea were harvested from Ulleung Island, packaged in $30\;{\mu}m$ PP, $30\;{\mu}m$ Antifogging-OPP, $30\;{\mu}m$ LDPE, $18\;{\mu}m$ Macroperforated-HDPE, $60\;{\mu}m$ nylon/PE, or $85\;{\mu}m$ PVC/PE film, then stored at 4, 10 or $20^{\circ}C$ for up to 14 days. The $O_2$ concentration decreased to $9{\sim}10%$ in the PP and A-OPP packaging, to $12{\sim}16%$ in LDPE packaging, and to 2% in nylon/PE and PVC/PE packaging at $10^{\circ}C$. The $CO_2$ concentration increased to 5% at $10^{\circ}C$ in PP, A-OPP and LDPE packaging, but increased consistently in the nylon/PE and PVC/PE packaging. Weight loss was markedly reduced by all MAP films except M-HDPE, and which was enhanced with decreasing storage temperature. The soluble solids and pH were not affected by the packaging material at $4^{\circ}C$ and $10^{\circ}C$, but were affected at $20^{\circ}C$. The highest score for sensory qualities (appearance, color and overall acceptability) was obtained for vegetables stored at $4^{\circ}C$ in PP films. Our results show that MAP using PP films and $4^{\circ}C$ storage can effectively maintain the quality of Solidago virgaurea spp. gigantea.

Preparation and Properties of Waterborne Polyurethanes Based on Ttiblock Glycol $(CL)_{4.5}$-PTMG-$(CL)_{4.5}$ for Water Vapor Permeable Coatings: Effect of Soft Segment Content

  • Kwak, Yong-Sil;Kim, Han-Do
    • Fibers and Polymers
    • /
    • v.3 no.4
    • /
    • pp.153-158
    • /
    • 2002
  • A series of waterborne polyurethanes (WBPU) were prepared from 4,4-dicyclohexylmethane diisocyanate ($H_{12}$MDI),2,2-bis(hydroxylmethyl) propionic acid (DMPA), othylenediarnine (EDA), triethylamine (TEA), and triblock glycol [TBG, ($\varepsilon$-caprolactone)$_{4.5}$-poly(tetramethylene ether) glycol (MW= 2000)-($\varepsilon$-caprolactone)$_{4.5}$: $(CL)_{4.5}$-PTMG-$(CL)_{4.5}$, MW=3000] as a soft segment. Two melting peaks of TBG at about 14$^{\circ}C$ and 38$^{\circ}C$ were observed indicating the presence of two different crystalline domains composed of CL and PTMG dominant component. The effect of soft segment content (60-75 wt%) on the colloidal properties of dispersion, and thermal and mechanical properties of WBPU films, the water vapor permeability (WVP) and water resistance (WR) of WBPU-coated Nylon fabrics, and the adhesive strength of WBPU- coated layer and Nylon fabrics was investigated. As soft segment contents increased, the water vapor permeability of WBPU- coated Nylon fabrics increased from 3615 to 4502 g/$m^2$day, however, the water resistances decreased from 1300 to 500 mm$H_2$O.O.

Dyeing Performance of Disperse Dyes Based on 2-aminothiazole for Cellulose Triacetate and Nylon Fibers

  • Maradiya, Hari-Raghav;Patel, Vithal-Soma
    • Fibers and Polymers
    • /
    • v.3 no.1
    • /
    • pp.43-48
    • /
    • 2002
  • A series of monoazo disperse dyes based on 2-amino-4-phenylthiazole was prepared using various N,N-dialkvlaniline derivatives as the coupling component. The dyes were characterized by IR spectral studies, visible absorption spectroscopy and elemental analysis. The dyeing performance of these dyes was assessed on cellulose triacetate and nylon fibers. These dyes were found to give a wide range of colour shades varying from bright red to royal blue with very good depth, brightness and levelness on fibers. The dyed fibers showed good to very good light fastness and very good to excellent fastness to washing, perspiration, rubbing and sublimation. The dyebath exhaustion and fixation on the fibers were found to be very good.

A Study on the Thermal Stability of Carpet in Air Condition (에어컨디션에서 카펫의 열안정성에 관한 연구)

  • Park, Keun-Ho;Lee, Soo;Song, Ju-Yeong;Lee, Ki-Chul
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.362-367
    • /
    • 2006
  • This paper describes the experiments for investigating the effects of thermal stability of several commercial carpet mate materials. The melting point and thermal decomposition temperature was measured by means of a differential scanning calorimeter(DSC) in air condition. The DSC data and burning test results of nylon bulked continuous filament(N-BCF) yarn 100%, nylon(NY), polypropylene(PP), and a new material named polytrimethyleneterephthalate(PTT) were analysed to obtain the effect on their thermal stability. Conclusively, we observed that PTT and PP were approximately $380^{\circ}C$ and $240^{\circ}C$ to start the thermal decomposition, respectively. In other words, PTT is thermally the most stable material for carpet manufacturing.

Fabric Dyeing Using Anthocyan Pigment from Grape Skin (포도과피의 안토이안 색소를 이용한 직물 염색)

  • 고영실;이혜자;유혜자
    • Journal of the Korean Home Economics Association
    • /
    • v.38 no.11
    • /
    • pp.127-135
    • /
    • 2000
  • The natural dyestuff, grape skin dye was manufactured from grape skin by boiling in 0.1% HCI solution, eliminating the sugar and powdering in freeze dryer. Cotton, wool, silk and nylon fabrics were dyed under several conditions using the manufactured grape skin dye to investigate the dyeability and color fastness. Dyeing was operated in acidic dyebath of pH 4 because the grape skin is anionic. The color of dyed fabrics were affected on temperature of dyeing solution. Under 80$\^{C}$, the color of dyed fabrics were red or violet, but changed to brown in laundering. Above 100$\^{C}$, the color were brown and safe in laundering. Dyeabilities on wool, silk, and nylon fabrics were good, especially silk fabrics were dyed deeper than others. Dyeability was developed with concenturation of dyeing solution. All the dyed fabrics were excellent in color fastness to crocking and laundering. Light fastness was low to moderate. The light fastness of dyed nylon fabrics were as poor as grade 1, but they could be improved to grade 3∼4 by aftertreatment with gallic acid.

  • PDF

Property Evaluation of Breathable Blend Fabric of MPCE Copolymer and Wet Coagulated Polyurethane (MPCE copolymer와 습식 폴리우레탄의 블렌드에 의한 투습방수 나일론 직물의 제반 물성변화에 관한 연구)

  • Yi, Jong-Woo;Chae, Ei-Jung;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.26 no.4
    • /
    • pp.322-330
    • /
    • 2014
  • The phospholipid-based MPCE(2-Methacryloxyethyl Phosphoryl Chlorine) copolymer was mixed with wet polyurethane for coating of nylon fabrics. The substitution rate of water in coagulation bath with DMF was changed under control of the size of formed hydrophilic microporous cell enable to manufacture excellent breathable, anti-bacterial and moisture control fabrics. Biocompatible property, vapor permeability, hydrostatic pressure, moisture management and anti-bacterial property were investigated for treated nylon fabrics. In result, increased moisture transmission rates, decreased water resistance and outstanding moisture control property could be confirmed by enhanced hydrophilicity of wet-coated nylon fabric with MPCE copolymer.

A Study on the Nylon Wire Holding and Release Mechanism for Cube Satellites by Applying Constant Holding

  • Koo, KeonWoo
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.1-6
    • /
    • 2021
  • The non-explosive holding and release mechanism is used to prevent damage to the mission component caused by explosives when the deployment structure for Cube Satellites is separated. However, among the several types available, the non-explosive holding and release mechanism system using nylon wires depend on the nylon wire knot method and tightening power of the worker. Therefore, in this study, we conducted experiments with the operation of a new holding and release mechanism system by conceptualizing the Boa System Dial, which can provide a constant tightening force regardless of worker proficiency and deploying a imitational solar panel. In this study, the process of binding and unbinding with constant tension was recorded while applying the novel non-explosive holding and release mechanism using the Boa System Dial proposed. In addition, required advances are indicated for the application of the proposed system to actual Cube Satellites.

Deformation and flow resistance characteristics of model net cages according to shapes and arrangements of sinkers (발돌의 형상 및 배치 방법의 변화에 따른 모형 가두리 그물의 변형 및 유수저항 특성)

  • Kim, Sang-Kook;Yang, Kyong-Uk;Kim, Dae-An;Kim, Tae-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.3
    • /
    • pp.192-205
    • /
    • 2007
  • The objective of this study was to investigate the optimal shapes and arrangements of sinkers attached to net cages to prevent their deformation in a current. A series of model experiments were conducted in a circulating water channel, using 5 different types of sinker(high-weighted ball, low-weighted ball, columntype, egg-shaped and iron bar-framed) and 2 types of square net cage constructed from both Nylon Raschel netting and Nylon knotted netting, on a 1/20th scale. The deflection of the model nets against the flow was smallest with the iron bar-framed weight compared to the other four types of sinker. It was expected that the optimal shapes of sinkers would be either the ball or egg-shape; however, iron bar-framed weight actually had larger drag forces. The dispersed deployment of sinkers on the bottom frames of model net cages performed better with relatively slow flows, while the concentrated deployment at 4 corners functioned better with relatively fast flows, in preventing the nets from becoming severely deformed. The deformation of the net cages was larger for the Nylon knotted netting than the Nylon Raschel netting. With respect to flow resistance, the Nylon Raschel netting, rather than the Nylon knotted netting, was more suitable for construction of net cages.