• 제목/요약/키워드: nutritional and environmental conditions

검색결과 94건 처리시간 0.024초

PCB 이성질체가 설치류 신경세포에 미치는 영향: 키토산의 효과 (Effects of PCB Congeners in Rodent Neuronal Cells in Culture : Effects of Chitosan)

  • 김선영;이현교
    • Environmental Analysis Health and Toxicology
    • /
    • 제22권3호
    • /
    • pp.279-285
    • /
    • 2007
  • The present study attempted to analyze the mechanism of PCB-induced neurotoxicity with respect to the PKC signaling. Since the developing neuron is particularly sensitive to PCB-induced neurotoxicity, we isolated cerebellar granule cells derived from 7-day old SD rats and grew cells in culture for additional 7 days to mimic PND-14 conditions. Only non-coplanar PCBs at a high dose showed a significant increase of total PKC activity at $[^3H]PDBu$ binding assay, indicating that non-coplanar PCBs are more neuroactive than coplanar PCBs in neuronal cells. PKC isoforms were immunoblotted with respective monoclonal antibodies. PKC-alpha and-epsilon were activated with non-coplanar PCB exposure. The result suggests that coplanar PCBs have a PKC pathway different from non-coplanar PCBs. Activation of PKC with exposure was dampened with treatment of high molecular weight of chitosan. Chilean (M.W. > 1,000 kDa) inhibited the total activity of PKC induced by the non-coplanar PCBs. Translocation of PKC isoforms was also inhibited by the high molecular weight of chitosan. The study demonstrated that non-coplanar PCBs are more potent neurotoxic congeners than coplanar PCBs and the alteration of PKC activities by PCB exposure can be blocked with the treatment of chitosan. The results suggest a potential use of chitosan as a means of nutritional intervention to prevent the harmful effects of pollutant-derived diseases.

Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle - A review

  • Park, Seung Ju;Beak, Seok-Hyeon;Jung, Da Jin Sol;Kim, Sang Yeob;Jeong, In Hyuk;Piao, Min Yu;Kang, Hyeok Joong;Fassah, Dilla Mareistia;Na, Sang Weon;Yoo, Seon Pil;Baik, Myunggi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권7호
    • /
    • pp.1043-1061
    • /
    • 2018
  • Intramuscular fat (IMF) content in skeletal muscle including the longissimus dorsi muscle (LM), also known as marbling fat, is one of the most important factors determining beef quality in several countries including Korea, Japan, Australia, and the United States. Genetics and breed, management, and nutrition affect IMF deposition. Japanese Black cattle breed has the highest IMF content in the world, and Korean cattle (also called Hanwoo) the second highest. Here, we review results of research on genetic factors (breed and sex differences and heritability) that affect IMF deposition. Cattle management factors are also important for IMF deposition. Castration of bulls increases IMF deposition in most cattle breeds. The effects of several management factors, including weaning age, castration, slaughter weight and age, and environmental conditions on IMF deposition are also reviewed. Nutritional factors, including fat metabolism, digestion and absorption of feed, glucose/starch availability, and vitamin A, D, and C levels are important for IMF deposition. Manipulating IMF deposition through developmental programming via metabolic imprinting is a recently proposed nutritional method to change potential IMF deposition during the fetal and neonatal periods in rodents and domestic animals. Application of fetal nutritional programming to increase IMF deposition of progeny in later life is reviewed. The coordination of several factors affects IMF deposition. Thus, a combination of several strategies may be needed to manipulate IMF deposition, depending on the consumer's beef preference. In particular, stage-specific feeding programs with concentrate-based diets developed by Japan and Korea are described in this article.

식용곤충 함유 반려동물 식품에 대한 국내거주 미국인 소비자 인식 및 태도 연구 (Perceptions and Attitudes of Americans in Korea toward Edible Insect-based Pet Food)

  • 김서영;배가은;양희
    • 한국응용곤충학회지
    • /
    • 제60권4호
    • /
    • pp.493-502
    • /
    • 2021
  • 식용곤충 함유 반려동물 식품 시장의 성장 요인을 확인하기 위하여, 반려동물 식품시장 규모가 가장 큰 국가가 미국임을 고려하여 미국인 소비자를 대상으로 식용곤충 함유 반려동물 식품에 대한 인식과 태도를 분석하였다. 연구는 반려견을 키우는 재한 미국인 16명을 두 그룹으로 나누어 심층토론 방식으로 다음과 같은 세 가지 상황에서 진행하였다. 먼저 식용곤충 함유 반려동물 식품에 대한 자유 연상 인식을 관찰하였고, 이후 식용곤충 함유 반려동물 식품 관련 언론 정보를 제공한 후 이에 대한 태도를 분석하였으며, 마지막으로 실제 제품을 제시하여 구매 맥락에서의 소비자 태도를 확인하였다. 분석 결과, 참여자들은 식용곤충 원료에 대해 자유 연상 시 '친환경적인', '지속가능한'과 같은 환경적 가치에 대한 인식이 높고 이와 관련한 구체적 언론 정보에 대해서도 긍정적인 태도를 보였지만, 구매 맥락에서는 오히려 환경적 가치보다 '저 알레르기', '고단백질', '피부/모질 개선' 등과 같은 영양 및 건강기능적 가치를 중요하게 여기는 것으로 나타났다. 한편, '식용곤충 원료에 대한 거부감'은 일반 식품과 마찬가지로 반려동물 식품에서도 여전히 가장 중요한 부정적 요소로 나타났다. 본 연구 결과는 미국인 소비자들을 대상으로 세 가지 상황에서 식용곤충 함유 반려동물 식품의 환경적, 영양적, 건강기능적 가치에 대한 인식과 태도를 조사함으로써 식용곤충 원료 산업에서 시도하고 있는 반려동물 식품 시장 진출 전망에 대한 가능성을 확인한 것에 의의가 있다.

Current situation and future trends for beef production in the United States of America - A review

  • Drouillard, James S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권7호
    • /
    • pp.1007-1016
    • /
    • 2018
  • USA beef production is characterized by a diversity of climates, environmental conditions, animal phenotypes, management systems, and a multiplicity of nutritional inputs. The USA beef herd consists of more than 80 breeds of cattle and crosses thereof, and the industry is divided into distinct, but ofttimes overlapping sectors, including seedstock production, cow-calf production, stocker/backgrounding, and feedlot. Exception for male dairy calves, production is predominantly pastoral-based, with young stock spending relatively brief portions of their life in feedlots. The beef industry is very technology driven, utilizing reproductive management strategies, genetic improvement technologies, exogenous growth promoting compounds, vaccines, antibiotics, and feed processing strategies, focusing on improvements in efficiency and cost of production. Young steers and heifers are grain-based diets fed for an average of 5 months, mostly in feedlots of 1,000 head capacity or more, and typically are slaughtered at 15 to 28 months of age to produce tender, well-marbled beef. Per capita beef consumption is nearly 26 kg annually, over half of which is consumed in the form of ground products. Beef exports, which are increasingly important, consist primarily of high value cuts and variety meats, depending on destination. In recent years, adverse climatic conditions (i.e., draught), a shrinking agricultural workforce, emergence of food-borne pathogens, concerns over development of antimicrobial resistance, animal welfare/well-being, environmental impact, consumer perceptions of healthfulness of beef, consumer perceptions of food animal production practices, and alternative uses of traditional feed grains have become increasingly important with respect to their impact on both beef production and demand for beef products. Similarly, changing consumer demographics and globalization of beef markets have dictated changes in the types of products demanded by consumers of USA beef, both domestically and abroad. The industry is highly adaptive, however, and responds quickly to evolving economic signals.

Enhanced Salt Stress Tolerance in Transgenic Potato Plants Expressing IbMYB1, a Sweet Potato Transcription Factor

  • Cheng, Yu-Jie;Kim, Myoung-Duck;Deng, Xi-Ping;Kwak, Sang-Soo;Chen, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권12호
    • /
    • pp.1737-1746
    • /
    • 2013
  • IbMYB1, a transcription factor (TF) for R2R3-type MYB TFs, is a key regulator of anthocyanin biosynthesis during storage of sweet potatoes. Anthocyanins provide important antioxidants of nutritional value to humans, and also protect plants from oxidative stress. This study aimed to increase transgenic potatoes' (Solanum tuberosum cv. LongShu No.3) tolerance to environmental stress and enhance their nutritional value. Transgenic potato plants expressing IbMYB1 genes under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter (referred to as SM plants) were successfully generated through Agrobacterium-mediated transformation. Two representative transgenic SM5 and SM12 lines were evaluated for enhanced tolerance to salinity, UV-B rays, and drought conditions. Following treatment of 100 mM NaCl, seedlings of SM5 and SM12 lines showed less root damage and more shoot growth than control lines expressing only an empty vector. Transgenic potato plants in pots treated with 400 mM NaCl showed high amounts of secondary metabolites, including phenols, anthocyanins, and flavonoids, compared with control plants. After treatment of 400 mM NaCl, transgenic potato plants also showed high DDPH radical scavenging activity and high PS II photochemical efficiency compared with the control line. Furthermore, following treatment of NaCl, UV-B, and drought stress, the expression levels of IbMYB1 and several structural genes in the flavonoid biosynthesis such as CHS, DFR, and ANS in transgenic plants were found to be correlated with plant phenotype. The results suggest that enhanced IbMYB1 expression affects secondary metabolism, which leads to improved tolerance ability in transgenic potatoes.

Cultural characteristics of Cordyceps militaris strain 'Yedang 3' on various media and nutritional conditions

  • Lee, Byung-Joo;Lee, Mi-Ae;Kim, Yong-Gyun;Lee, Kwang-Won;Choi, Young-Sang;Lee, Byung-Eui;Song, Ho-Yeon
    • 한국버섯학회지
    • /
    • 제11권3호
    • /
    • pp.124-130
    • /
    • 2013
  • The effects of environmental and nutritional requirement such as temperature, pH, different media, carbon, nitrogen, and carbon-to-nitrogen ratio on the mycelial growth of Cordyceps militaris strain 'Yedang 3' were studied. The optimum temperature and pH for the growth of mycelium were $20-25^{\circ}C$ and pH 6-7, respectively. Out of ten media tested, mushroom complete media (MCM) was the best medium for fast mycelial growth, and Sabouraud's dextrose agar yeast extract (SDAY), malt extract yeast extract agar (YMA) also were favored. The color and shape of colonies varied in different media. The best carbon sources for mycelial growth were fructose, mannitol, and sucrose, whereas the best nitrogen sources were tryptone and peptone. However, mycelia grew slowly in inorganic nitrogen compounds such as $NH_4Cl$, $(NH_4)_2SO_4$, $NH_4NO_3$, and $NaNO_3$. The optimum C:N ratio observed on the culture media was 30-40 range. These results provided basic information on cultural characteristics of vegetative growth and might be useful for spawn production in Cordyceps militaris.

Nutrient and ruminal fermentation profiles of Camellia seed residues with fungal pretreatment

  • Yang, Chunlei;Chen, Zhongfa;Wu, Yuelei;Wang, Jiakun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권3호
    • /
    • pp.357-365
    • /
    • 2019
  • Objective: The experiment was conducted to evaluate the effects of four fungal pretreatments on the nutritional value of Camellia seed residues, and to evaluate the feeding value of pretreated Camellia seed residues for ruminants. Methods: Camellia seed residues were firstly fermented by four lignin degrading fungi, namely, Phanerochaete chrysosporium (P. chrysosporium)-30942, Trichoderma koningiopsis (T. koningiopsis)-2660, Trichoderma aspellum (T. aspellum)-2527, or T. aspellum-2627, under solid-state fermentation (SSF) conditions at six different incubation times. The nutritional value of each fermented Camellia seed residues was then analyzed. The fermentation profiles, organic matter degradability and metabolizable energy of each pre-treated Camellia seed residue were further evaluated using an in vitro rumen fermentation system. Results: After 5 days of fermentation, P. chrysosporium-30942 had higher degradation of lignin (20.51%), consumed less hemicellulose (4.02%), and the SSF efficiency reached 83.43%. T. koningiopsis-2660 degraded more lignin (21.54%) and consumed less cellulose (20.94%) and hemicellulose (2.51%), the SSF efficiency reached 127.93%. The maximum SSF efficiency was 58.18% for T. aspellum-2527 and 47.61% for T. aspellum-2627, appeared at 30 and 15 days respectively. All the fungal pretreatments significantly improved the crude protein content (p<0.05). The Camellia seed residues pretreated for 5 days were found to possess significantly increased organic matter degradability, volatile fatty acid production and metabolizable energy (p<0.05) after the treatment of either P. chrysosporium-30942, T. koningiopsis-2660 or T. aspellum-2527. The fungal pretreatments did not significantly change the rumen fermentation pattern of Camellia seed residues, with an unchanged ratio of acetate to propionate. Conclusion: The fungi showed excellent potential for the solid-state bioconversion of Camellia seed residues into digestible ruminant energy feed, and their shorter lignin degradation characteristics could reduce loss of the other available carbohydrates during SSF.

환경조건에 따른 Aphanizomenon flos-aquae (Cyanophyceae) 균주의 성장 반응 및 독소 생성 (Response of Growth and Toxigenicity to Varying Temperature and Nutrient Conditions in Aphanizomenon flos-aquae (Cyanophyceae))

  • 류희성;신라영;이정호
    • 한국물환경학회지
    • /
    • 제33권5호
    • /
    • pp.538-545
    • /
    • 2017
  • The purpose of this study is to investigate growth response and toxigenicity under various temperature and nutritional conditions, in order to understand the physioecological characteristics of Aphanizomenon flos-aquae, which is a bloom-forming cyanobacterium in the Nakdong River. The strain was inoculated into media under combinations of four temperatures (4, 12, 21, $30^{\circ}C$) and three nutrients (modified CB medium, P-depleted CB medium, N-depleted CB medium) for 28 days. The algae-inhibition tests were performed to assess the potential allelopathic effects of the strains' filtrates on the growth of four algae strains (Microcystis aeruginosa, Aulacoseria ambigua f. spiralis, Aphanizomenon flos-aquae, Scenedesmus obliquus). Toxin production of a strain was measured by Enzyme-Linked ImmunoSolbent Assay (ELISA). The optimal growth temperature (Topt) of strains was $19.9^{\circ}C$ ($18.3-21.2^{\circ}C$), and the temperature range for growth was from $-0.3^{\circ}C$ to $34.3^{\circ}C$. Specific growth rate (${\mu}$) in modified CB medium varied from 0.10 to $0.16day^{-1}$, and the maximum growth rate (${\mu}_{max}$) was $0.17day^{-1}$. Although growth curves under N-existed and N-depleted conditions were almost the same, growth under N-depleted condition was relatively slowed (${\mu}=0.09$ to $0.14day^{-1}$), with a decreased maximum cell density. However, growth under the P-depleted condition was restricted for all temperatures, Two stains of Aphanizomenon flos-aquae were confirmed as not producing toxins, because saxitoxin and cylindrospermopsin were not detected by ELISA. The exudates or filtrates from the Aphanizomenon flos-aquae (DGUC003) resulted in significant inhibition of algal growth on the Aulacoseira ambigua f. spiralis (DGUD001) and Aphanizomenon flos-aquae (DGUC001) (p < 0.01).

고품질 표고 생산 지역의 버섯 생산기간중 기후 분석 (Analysis of Climatic Factors during Growing Period of High-Quality Oak Mushroom(Lentinus edodes(Berk) Sing))

  • 손정익;최원석
    • 생물환경조절학회지
    • /
    • 제9권2호
    • /
    • pp.115-119
    • /
    • 2000
  • 표고버섯은 담자균류 송이과에 속하는 식용 버섯으로, 영양 성분 및 약리적 효능이 높기 때문에 동양인에게 중요한 버섯이며, 점차로 생산량과 소비량이 증가하고 있다. 본 연구에서는, 고품질 표고버섯 생산시기의 기상자료를 분석하여 표고버섯의 품질에 영향을 주는 생육 환경요인을 분석하였다. 이를 위하여 1997~1998년 국내 고품질 표고버섯이 생산되는 지역중 3지역(부여, 원주, 장흥)을 선정하였다. 표고버섯의 다량 발생시기 20일 기준으로 기상분석시기 15일을 선정하였다. 환경요인으로는 발생시기의 일 온도차, 일습도차, 일평균온도, 일 평균습도 및 풍속을 분석하였다. 발생기간중의 일 평균온도는 버섯 발생 온도 하한치인 $7^{\circ}C$ 이하에서 적정온도 $20^{\circ}C$까지의 변화를 보였고, 일 온도차는 주간에는 $7~20^{\circ}C$, 야간에 $0~-2^{\circ}C$의 범위를 나타냈다. 일평균습도 50~70%으로 강우에 따라서 변화 폭이 컸으며, 일습도차는 40~60%의 차를 나타냈다. 풍속은 1~4m.$s^{-1}$이었다 .따라서 화고, 동고의 생육환경은 일반적인 표고버섯의 적정 생육 조건과는 큰 차이를 보였다. 생육기간동안의 일 온도차, 일습도차, 저 습도, 풍속 등의 환경 조건은 고품질 표고버섯 발생의 요인의 하나라고 추정된다. 이 연구결과는 버섯의 시설재배시 고품질 표고버섯 생산을 위한 환경조절기술로 적용될 수 있을 것으로 판단된다.

  • PDF

Non Timber Forest Products Sold in the Markets of Itanagar Capital Region, Arunachal Pradesh, India

  • Soyala Kashung;Subu Angkha;Tejashwini Gajurel;Tage Yakang;Pinaki Adhikary
    • Journal of Forest and Environmental Science
    • /
    • 제39권3호
    • /
    • pp.155-166
    • /
    • 2023
  • Consumption and selling of Non Timber Forest Products (NTFPs) are important means to meet nutritional requirements and improve the socio-economic conditions of the rural population. The purpose of this study was to document the status and utilization pattern and assess the economic value of NTFPs sold in the markets of the Itanagar Capital Region (ICR) of Arunachal Pradesh. Five major markets with 182 vendors were surveyed, and a total of 94 plant-based products under 63 species belonging to 32 families were found to be sold in the markets. Species like Acmella oleracea, Clerodendrum glandulosum, Dioscorea alata, Houttuynia cordata, Phoebe goalparensis, Piper pedicellatum, Zanthoxylum rhetsa, etc. are found to be highly preferred and have a higher demand in the local markets. The edible products of species like Piper pedicellatum and Phoebe goalparensis though highly consumed in the study area, are used only within the region, and the national and international demands of the species are nil. The animal-base products are not included in the study.