• Title/Summary/Keyword: nutrient-solution

Search Result 769, Processing Time 0.027 seconds

Characteristics of Eco-friendly Porous Concrete for Seawater Purification Using By-Products of Steel Industry (철강산업 부산물을 활용한 해수정화용 친환경 다공질콘크리트의 특성)

  • Han, Woonwoo;Lee, Byungjae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • As of 2018, Steel slag was generated approximately 24.23 million tons. Howeve, except blast furnace slag, steel slag is a typical by-product which does not have a clearly defined purpose in recycling. Thus, countries around the world are putting great efforts into developing a purpose for the recycling of steel slag. The vast habitat foundation of marine life has been destroyed due to recent reckless marine development and environment pollution, resulting in intensification of the decline of marine resources, and a solution to this issue is imperative. In order to propose a method to recycle large amounts of by-product slag into a material that can serve as an alternative to natural aggregate, the engineering properties and applicability for each mixing factor of environment friendly porous concrete as a material for the composition of seawater purification were in this study. Regarding the nutrient elution properties, it was clear that the nutrients continuously flowed out up to an immersion time by 8 months in natural seawater; the nitrogenous fertilizer displayed excellent elution properties in this regard.

Effects of Plant Growth Regulators on Haploid Production of Wheat (밀 반수체 생산에서 식물생장조절제의 영향)

  • Kim, Young Jin;Lee, Kwang Won;Kim, Hag Sin;Cheong, Young Keun;Park, Kwang Geun;Kim, Kee Jong
    • Korean Journal of Breeding Science
    • /
    • v.43 no.1
    • /
    • pp.50-55
    • /
    • 2011
  • The introduction of doubled haploid (DH) approach into breeding programs has reduced the times and population sizes required for the production of pure lines. We carried out the experiment for development on effective method of producing haploid in wheat. Emasculated spikelets of wheat were pollinated with maize pollen and cultured in the solution containing 40 g/L sucrose and 2,4-D, NAA, 2,4,5-T and dicamba 24 h after pollination, and then incubated until embryo rescue. Fourteen to sixteen days after pollination, the embryos are excised and cultured in half-strength MS basal medium supplemented with 20 g/L sucrose and 1 mg/L NAA. The type of plant growth regulators was found to be most significant in production of haploid plants. The application of synthetic auxins to pollinated florets, stimulates haploid embryo development to a stage where the embryos can be rescued onto nutrient media. The percentage of seeded florets was significantly affected by 100 mg/L 2,4-D, 150 mg/L 2,4,5-T and 50 mg/L dicamba. The percentage of embryos formed was significantly increased by treatment with 2,4-D and 2,4,5-T at 100 mg/L, and dicamba at 50 mg/L, but the treatments with 150 mg/L 2,4-D inhibited embryo development and plant regeneration. The optimum application time of plant growth regulators was 24 hrs after pollination.

Optimum Media of Sedum kamtschaticum for Pot Culture in an Ebb & Flow System (Ebb & Flow 시스템에서 기린초 분화재배에 적합한 배지 선발)

  • Kim, Su Jeong;Chang, Dong Chil;Suh, Jong Taek;Lee, Eung Ho
    • FLOWER RESEARCH JOURNAL
    • /
    • v.16 no.3
    • /
    • pp.205-210
    • /
    • 2008
  • Sedum kamtschaticum has been used as one of the native valuable plants for ornamental purpose. This experiment was conducted to find out the optimum media for pot cultured Sedum kamtschaticum using peatmoss and coir-based mixtures. Four mixtures such as peatmoss:perlite(5:5, v/v), peatmoss:perlite(7:3, v/v), coir:perlite(5:5, v/v), and coir:perlite(7:3, v/v) were used. Plants were irrigated with a Sonneveld solution in an ebb & flow system. The content of T-N, K, and Ca in the peatmoss-based media was higher than those of the coir-based media. The concentration of T-N, K, and Ca in the shoots of Sedum kamtschaticum increased when plants were cultured with peatmoss-based media. In the peatmoss-based media, plant growth, such as number of branches, leaf length and shoot fresh and dry weights, were significantly increased than those of plant grown in the coir-based media. As the results, the optimum media for pot cultured Sedum kamtschaticum in an ebb & flow system was considered to be the peatmoss-based mixtures.

Response of N. Sources to Nutrient Uptake of Tobacco Plant (질소원(窒素源)에 따른 담배식물의 양분흡수반응(養分吸收反應))

  • Lee, Yun-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.4
    • /
    • pp.413-418
    • /
    • 1985
  • Tobacco plant(8-leaf seedlings) were grown on water culture fertilized with different N sources ($NO_3-N$, $NH_4-N$, $NO_3+NH_4-N$) during 15 days. Daily uptake of nutrients and inorganic constituents in plants were investigated in relation to growth responses of them. 1. Nitrate-fed plant showed higher daily uptake of inorganic cations than those in other treatments, and reached about two times higher uptake of nitrogen and three times more uptake of cations (K, Ca, Mg). Potassium was preferentially uptaken at a very fast rate from the beginning after treatment. Also $NO_3-N$ tended to be taken up selectively by the plant from the mixture of nitrate and $NH_4-N$. 2. The initial pH (pH 6.0) of culture medium drastically changed into acid (pH 4.0) in the $NH_4-N$ medium, but into slightly higher (pH 6.4) in the nitrate when measured after exposure of 24 hours. The mixture also tended to show an acidity but much weaker than $NH_4-N$ solution. 3. Nitrate-fed plant had a normal growth pattern but $NH_4-N$ fed plant almost stopped growing. Those plants containing both nitrate and ammonium N were also showed very poor growth.

  • PDF

Studies on Nutri-irrigation Culture for Developing Farm-land Resources -2. Effect of Calcium & Cation Level on the Growth and Root Environment of Radish (관비농법(灌肥農法)에 의한 농지자원개발(農地資源開發)에 관한 연구(硏究) -2. 「칼슘」 및 양(陽) 「이온」 공급수준이 이십일(二十日)무의 생육(生育)과 근권환경(根圈環境)에 미치는 영향(影響)을 중심(中心)으로)

  • Kim, Yong Chull;Kim, In Ja
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.4 no.1
    • /
    • pp.41-48
    • /
    • 1971
  • For increasing Productivity of Nutri-irrigation culture used liquified fertilizer in sandy land, the effect of Ca etc. on growth and roat system of crop (radish) was studied. Results are as follows. 1) High level of Ca in irrigated nutrient solution promoted growth of radish, especially, growth of underground part and increased yield on sand media than low level of Ca. 2) High level of cation promoted also growth of radish compared with control though less than high level of Ca do. 3) Promoted growth in high level of Ca and cation acompanied larger attachment of sand grain to root system making good condition for absorption. 4) Higher content of Ca in fibrous roots and attached sand grains compared with thickend root and other sand media (especially, in higher level of Ca), suggest a specific roll of Ca on the in teraction between roots and media constituting a root environment for productivity. 5) The content of Ca, Mg, Mn, in tops are manifestly higher than underground part while no dislinct differences are found between tops and underground parts in N.P.K.

  • PDF

Growth and Physiological Characteristics in a Halophyte Suaeda glauca under Different NaCl Concentrations (염생식물 나문재의 염농도에 따른 생장 및 생리적 특성)

  • Kim, Ji-Young;Seong, Phil-Mo;Lee, Deog-Bae;Chung, Nam-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.1
    • /
    • pp.48-54
    • /
    • 2019
  • This research was carried out to investigate the plant growth, inorganic ion and amino acid content characteristics in a halophyte, Suaeda glauca, under different NaCl concentrations for cultivating in the reclaimed land. S. glauca was hydroponically cultivated under 0, 50, 100, 200, 300 and 400 mM NaCl concentrations with Hogland's nutrient solution. To evaluate growth response under different NaCl concentrations, plant height and number of branches, dry weight, Fv/Fm value, and photosynthetic efficiency were investigated. To find out physiological characteristic, inorganic ion contents and amino acids in the plant were evaluated. The optimum concentration of NaCl for plant growth were 50 mM. The plant growth were gradually decreased in the concentration ranged from 100 to 400 mM. As increasing of NaCl concentration, Na ion was increased, but K, Ca, Mg ions were decreased in the plant. The amino acid contents were varied due to NaCl concentrations, but most of amino acids content in total plant was the lowest at 50 mM. Conversely, proline was exceptionally high at 50 mM of NaCl concentration. The Fv/Fm value was the highest at 50 mM of NaCl concentration. From these results, the optimum salt concentration for the growth of S. glauca was 50 mM, but the plant seems to adapt in a variety of salt environments in view of the change of ions and amino acids depending on salt concentration and the maintenance of photosynthetic efficiency even under high salt condition.

Quantification of Rockwool Substrate Water Content using a Capacitive Water Sensor (정전용량 수분센서의 배지 함수량 정량화)

  • Baek, Jeong-Hyeon;Park, Ju-Sung;Lee, Ho-Jin;An, Jin-Hee;Choi, Eun-Young
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.27-36
    • /
    • 2021
  • A capacitive water sensor was developed to measure the capacitance over a wide part of a substrate using an insulated electrode plate (30 cm × 10 cm) with copper and Teflon attached on either side of the substrate. This study aimed to convert the capacitance output obtained from the condenser-type capacitance sensor into the substrate water content. The quantification experiment was performed by measuring the changes in substrate water weight and capacitance while providing a nutrient solution and by subsequently comparing these values. The substrate water weight and capacitance were measured every 20 to 30 seconds using the sensor and load cell with a software developed specifically for this study. Using a curve-fitting program, the substrate water content was estimated from the output of the capacitance using the water weight and capacitance of the substrate as variables. When the amount of water supplied was increased, the capacitance tended to increase. Coefficient of variation (CV) in capacitance according to the water weight in substrate was greater with the 1.0 kg of water weight, compared with other weights. Thus, the fitting was performed with higher than 1.0 kg, from 1.7 to 6.0 kg of water weight. The correlation coefficient between the capacitance and water weight in substrate was 0.9696. The calibration equation estimated water content from the capacitance, and it was compared with the substrate water weight measured by the load cell.

Comparison of Environment, Growth, and Management Performance of the Standard Cut Chrysanthemum 'Jinba' in Conventional and Smart Farms

  • Roh, Yong Seung;Yoo, Yong Kweon
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.6
    • /
    • pp.655-665
    • /
    • 2020
  • Background and objective: This study was conducted to compare the cultivation environment, growth of cut flowers, and management performance of conventional farms and smart farms growing the standard cut chrysanthemum, 'Jinba'. Methods: Conventional and smart farms were selected, and facility information, cultivation environment, cut flower growth, and management performance were investigated. Results: The conventional and smart farms were located in Muan, Jeollanam-do, and conventional farming involved cultivating with soil culture in a plastic greenhouse, while the smart farm was cultivating with hydroponics in a plastic greenhouse. The conventional farm did not have sensors for environmental measurement such as light intensity and temperature and pH and EC sensors for fertigation, and all systems, including roof window, side window, thermal screen, and shading curtain, were operated manually. On the other hand, the smart farm was equipped with sensors for measuring the environment and nutrient solution, and was automatically controlled. The day and night mean temperatures, relative humidity, and solar radiation in the facilities of the conventional and the smart farm were managed similarly. But in the floral differentiation stage, the floral differentiation was delayed, as the night temperature of conventional farm was managed as low as 17.7℃ which was lower than smart farm. Accordingly, the harvest of cut flowers by the conventional farm was delayed to 35 days later than that of the smart farm. Also, soil moisture and EC of the conventional farm were unnecessarily kept higher than those of the smart farm in the early growth stage, and then were maintained relatively low during the period after floral differentiation, when a lot of water and nutrients were required. Therefore, growth of cut flower, cut flower length, number of leaves, flower diameter, and weight were poorer in the conventional farm than in the smart farm. In terms of management performance, yield and sales price were 10% and 38% higher for the smart farm than for the conventional farm, respectively. Also, the net income was 2,298 thousand won more for the smart farm than for the conventional farm. Conclusion: It was suggested that the improved growth of cut flowers and high management performance of the smart farm were due to precise environment management for growth by the automatic control and sensor.

Implement of Web-based Remote Monitoring System of Smart Greenhouse (스마트 온실 통합 모니터링 시스템 구축)

  • Dong Eok, Kim;Nou Bog, Park;Sun Jung, Hong;Dong Hyeon, Kang;Young Hoe, Woo;Jong Won, Lee;Yul Kyun, Ahn;Shin Hee, Han
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.24 no.4
    • /
    • pp.53-61
    • /
    • 2022
  • Growing agricultural products in greenhouses controlled by creating suitable climatic conditions and root zone of crop has been an important research and application subject. Appropriate environmental conditions in greenhouse are necessary for optimum plant growth improved crop yields. This study aimed to establish web-based remote monitoring system which monitors crops growth environment and status of crop on a real-time basis by applying to greenhouses IT technology connecting greenhouse equipment such as temperature sensors, soil sensors, crop sensors and camera. The measuring items were air temperature, relative humidity, solar radiation, CO2 concentration, EC and pH of nutrient solution, medium temperature, EC of medium, water content of medium, leaf temperature, sap flow, stem diameter, fruit diameter, etc. The developed greenhouse monitoring system was composed of the network system, the data collecting device with sensors, and cameras. Remote monitoring system was implemented in a server/client environment. Information on greenhouse environment and crops is stored in a database. Items on growth and environment is extracted from stored information, could be compared and analyzed. So, A integrated monitoring system for smart greenhouse would be use in application practice and understanding the environment and crop growth for smart greenhouse management. sap flow, stem diameter and pant-water relations

Growth Characteristics of Lettuce and Korean Mint as Affected by Microbubble in a Closed-type Plant Production System (밀폐형 식물생산시스템에서 마이크로버블 처리에 따른 상추와 배초향의 생장 특성)

  • Eun Won Park;Hee Sung Hwang;Hyeon Woo Jeong;Seung Jae Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.234-241
    • /
    • 2023
  • This study was conducted to investigate the growth of lettuce (Lactuca sativa L.) and Korean mint (Agastache rugosa Kuntze) with microbubble in a closed-type plant production system (CPPS) with a deep flow technique (DFT). Lettuce and Korean mint were grown in CPPS for 23 days. Microbubble was treated for 5 minutes daily at 9:00, 13:00, and 17:00 for 16 days. The leaf length, leaf width, leaf area, and fresh and dry weights of lettuce and Korean mint were significantly lower in microbubble than in the control. The total root length, root surface area, and the number of root tips of lettuce and Korean mint were significantly lower in the microbubble than in the control. In the case of average root diameter, there was no difference between the treatments of lettuce. However, Korean mint significantly increased in thickness in the microbubble treatment, indicating variations among the different crops. The results of the research indicated that microbubble treatment in the DFT inhibited plant growth by inducing abiotic stress in lettuce and Korean mint.