• 제목/요약/키워드: nutrient solution temperature

검색결과 93건 처리시간 0.018초

원칩 마이크로 컴퓨터를 이용한 양액 자동 조제 장치의 개발 (Development of Automatic Nutrient-Solution Controller Using Single-chip Microcomputer)

  • 오길근;류관희;홍순호;김효중
    • Journal of Biosystems Engineering
    • /
    • 제20권4호
    • /
    • pp.383-389
    • /
    • 1995
  • This study was conducted to develop an automatic nutrient control system for trickle application of nutrient solution. Temperature, electric conductivity(EC). pH and dissolved oxygen(DO) were selected as control variables. A controller using single-chip microcomputer was constructed. An automatic control system for nutrient solution and a controller using single-chip microcomputer with control algorithm were developed. The control system was tested, and could control temperature, EC and pH within the error ranges of $pm 0.2^{circ} pm 0.2mS/cm, pm 0.1pH$, respectively.

  • PDF

수경재배(水耕栽培)의 양액관리(養液管理) 자동화(自動化) 시스템 개발(開發) (Development of Nutrient Solution Control System for Water Culture)

  • 이기명;이주성;선철호;장익주;송재관;구건효
    • Journal of Biosystems Engineering
    • /
    • 제15권4호
    • /
    • pp.328-338
    • /
    • 1990
  • The objective of this study was to develop automatic systems of nutrient solution management for optimal nutrient solution environment and labor saving in water culture which enables factory crop production. In this study, an automatic control system and its driving program are developed to prepare, supply, and recover nutrient solution and to keep the optimal solution concentration level using microcomputers. Based on this study, the following conclusions are obtained: 1. The concentration measured by the system using oscillating circuit designed and built in this study, gave good agreements with the actual nutrient solution. 2. In water culture, the period of 12 hours for measuring concentration, pH, and temperature of the nutrient solution was optimum. Addition of control solution due to the decrease of the nutrient solution concentration is required in every 3 to 5 days. 3. It is estimated that the period of the whole solution change is 15 days, however, further research is needed to assure it. In addition, this period must be shortened in the future. 4. Both the hardware and software of the developed optimal nutrient solution control system in the water culture are working very well, however, it is necessary to develop a more economical one-chip micro controller to substitute for the microcomputer.

  • PDF

수경온실의 양액 냉각부하 예측모델 개발 (Development of a Numerical Model for Prediction of the Cooling Load of Nutrient Solution in Hydroponic Greenhouse)

  • 남상운;김문기;손정익
    • 생물환경조절학회지
    • /
    • 제2권2호
    • /
    • pp.99-109
    • /
    • 1993
  • Cooling of nutrient solution is essential to improve the growth environment of crops in hydroponic culture during summer season in Korea. This study was carried out to provide fundamental data for development of the cooling system satisfying the required cooling load of nutrient solution in hydroponic greenhouse. A numerical model for prediction of the cooling load of nutrient solution in hydroponic greenhouse was developed, and the results by the model showed good agreements with those by experiments. Main factors effecting on cooling load were solar radiation and air temperature in weather data, and conductivity of planting board and area ratio of bed to floor in greenhouse parameters. Using the model developed, the design cooling load of nutrient solution in hydroponic greenhouse of 1,000$m^2$(300pyong) was predicted to be 95,000 kJ/hr in Suwon and the vicinity.

  • PDF

액제 정밀계량장치를 이용한 액제 자동조제 시스템개발 (Development of Automatic Nutrient-Solution Control System Using a Low -Cost and Precise Liquid Metering Device)

  • 류관희;홍순호;이규철;이정훈;황호준
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1997년도 하계 학술대회 논문집
    • /
    • pp.89-98
    • /
    • 1997
  • This study was conducted to develop an automatic nutrient-solution control system for small-scale growers. The nutrient-solution control system consisted of a low-cost and precise metering device and a personal computer. The system controlled electric conductivity(EC) and pH of nutrient-solution based on the time-based feedback control method with the information about temperature, EC, and pH of the nutrient-soIution. The performance of the nutrient-solution control system was evaluated through the control of EC and pH while compared with those of commercial nutrient-solution control system. Also an experimental cultivation of tomato was conducted to verify and to improve the developed system. Results of this study were as follows. 1. An automatic nutrient-solution control system based on a low-cost and precise metering device was developed. 2. The developed system controlled EC and pH within $\pm$0.05 mS/cm and $\pm$0.2 pH full scale error respectively at $24^{/circ}C$. 3. When using the commercial system, the controlled values of EC and pH of the 500l of water were 1.29 mS/cm and 6.1 pH for the setting points of 1.4 mS/cm and 6.0 pH respectively at $22^{/circ}C$. 4. The developed nutrient-solution control system showed $\pm$0.05 mS/cm of deviation from the setting EC value over the experimental cultivation period. 5. The deviation from the average values of Ca and Mg mass content in the several nutrient-solution were 0.5% and 1.8% respectively.

  • PDF

수경재배 온실의 양액냉각시스템 개발 (Development of Nutrient Solution Cooling System in Hydroponic Greenhouse)

  • 남상운;김문기
    • 한국농공학회지
    • /
    • 제36권3호
    • /
    • pp.113-121
    • /
    • 1994
  • Since it is difficult to expect the normal production of plants in greenhouses during hot summer season in Korea, certain provisions on the control of extreme environmental factors in summer should be considered for the year-round cultivation in greenhouses. This study was carried out to find a method to suppress the temperature rising of nutrient solution by cooling, which is able to contribute to the improvement of the plant growth environment in hydroponic greenhouse during hot summer season. A mechanical cooling system using the counter flow type with double pipe was developed for cooling the nutrient solution efficiently. Also the heat transfer characteristics of the system was analysed experimentally and theoretically, and compared with the existing cooling systems of nutrient solution. The cooling capacities of three different Systems, which used polyethylene tube in solution tank, stainless tube in solution tank, and the counter flow type with double pipe, were evaluated. The performance of each cooling system was about 41 %, 70% and 81 % of design cooling load in hydroponic greenhouse of 1 ,000m$^2$ on the conditions that the flow rate of ground water was 2m$^3$/hr and the temperature difference between two liquids was 10 ˚C According to the results analysed as above, the cooling system was found to have a satisfactory cooling capability for regions where ground water supply is available. Fer the other regions where ground water supply is restricted, more efficient cooling System should be developed.

  • PDF

양액 자동 공급 제어 시스템의 설계 및 구현 (Design and Implementation of An Automatic Nutrient Solution Control System)

  • 정원근;이병로;김병철
    • 한국정보통신학회논문지
    • /
    • 제9권5호
    • /
    • pp.1059-1065
    • /
    • 2005
  • 본 연구에서는 임베디드 RTOS와 퍼지제어 알고리즘을 이용하여 양액의 농도와 공급량을 자동으로 조절하는 양액 공급 제어 시스템을 설계 및 구현하였다. 작물의 생육에 영향을 미치는 인자는 일사량, 외부온도, 외부습도, 생육단계로 구성하였으며, 양액온도, 전기전도도(EC), 산도(pH)가 측정되었다. 그 결과를 바탕으로 양액의 농도와 공급량 조절을 위해 양액 조절 퍼지제어 알고리즘을 개발하였다. 일반 사용자를 위하여 임베디드 RTOS, 한글 LCD, 그리고 그래픽으로 구성된 양액 전용 임베디드 제어기를 개발하였다.

마이크로컴퓨터를 이용한 온실멜론의 분무경 -박막순환식 양액재배 시스템 개발 (Development of an Aeroponics-NFT(Nutrient Film Technique) Nutriculture System Using Microcomputer for Greenhouse Melon)

  • 유수남;서상룡;정종훈
    • Journal of Biosystems Engineering
    • /
    • 제23권2호
    • /
    • pp.167-178
    • /
    • 1998
  • An Aero-NFT nutriculture system using microcomputer for cultivation of greenhouse melon was developed and the performance of the system was evaluated through experiments. The system could control temperature, EC and pH of the nutrient solution within the error ranges of $\pm$ 0.2$^{\circ}C$, $\pm$ 0.2 mS/cm, $\pm$ 0.1 pH, respectively. The results of cultivation experiment showed that temperature, EC and pH of the nutrient solution were generally controlled within the setting ranges during cultivation period. The growth results were good until pinching, but the fruit quality of melons was not high except sweetness and shape. To optimize performance of the system, more techlical information for nutriculture of greenhouse melon was needed.

  • PDF

다양한 배양액 조성이 코이어 수경재배 딸기 '매향'의 생육과 수량에 미치는 영향 (Effect of Various Composition of Nutrient Solution on Growth and Yield of Strawberry 'Maehyang' in Coir Substatrate Hydroponics)

  • 이정훈;이용범;최기영
    • 생물환경조절학회지
    • /
    • 제26권3호
    • /
    • pp.227-234
    • /
    • 2017
  • 본 연구는 딸기 '매향'의 양수분 흡수율을 고려하여 개발한 배양액을 검증하고자 이온 조성이 다른 5종 배양액으로 8개월 동안 수경재배하면서 생육과 수량에 미치는 영향을 조사하였다. 2015년 9월 22일 코이어 고설베드에 딸기 묘를 정식하고 1개월 후 다섯 종류의 배양액 농촌진흥청 딸기 배양액(RDA), 야마자키 딸기 배양액(Yamazaki), PBG 딸기 배양액(PBG), 서울시립대 딸기 배양액(UOS) 및 새로 개발된 서울시립대 딸기 배양액(NewUOS)을 사용하여 EC $1.0dS{\cdot}m^{-1}$, pH 6.0으로 1일 주당 150~300mL 공급하였다. 정식 60일 후 엽폭, 엽병장은 배양액 종류에 차이를 보였으며, 광합성은 RDA와 NewUOS 배양액 처리에서 높았고, PBG 배양액 처리에서 낮았다. 영양생장기 배액의 EC는 공급수준보다 낮은 EC $0.7{\sim}0.8dS{\cdot}m^{-1}$, 이후는 EC $1.0{\sim}1.2dS{\cdot}m^{-1}$로 안정되었다. 배액 pH는 Yamazaki 배양액 처리에서 6.2~6.8로 높은 반면, UOS 배양액은 5.1~5.2로 낮았다. 영양생장기 배액의 무기이온은 질산태 질소의 흡수가 가장 활발하였으며, 화방전개 이후 칼륨 흡수가 NewUOS, UOS 및 Yamazaki 배양액 처리에서 높았다. 정식 6개월 후 지상부와 지하부 생체중과 건물중은 UOS와 NewUOS 배양액에서 높았으며, 지상부 건물율은 Yamazaki 배양액에서 43.5%로 낮았으며, 지하부 건물율은 NewUOS배양액에서 30.6%로 낮았다. 12월부터 2월까지 수확된 딸기의 과장, 과폭, 과중, 당도는 배양액 차이에 의한 유의성은 없으나, NewUOS 배양액에서는 주당 과수와 평균 과중이 높아 수량이 높았다. 3월부터 5월까지 Yamazaki 배양액에서 수확된 딸기는 주당 과수와 수량이 높았다. 따라서 이온 조성 차이에 따른 배양액 5종으로 수경재배하였을 때 '매향'의 생육은 차이를 보이지 않았으나, 시기별 상품성 향상을 위해 정식 후 ~ 2월까지는 NewUOS 배양액을, 고온과 화방당 착과량이 많아지는 3월 이후에는 Yamazaki 배양액으로 재배하는 것이 적합하리라 본다.

온실멜론의 암면재배에 있어서 수분기의 양분공급제한이 생육 및 양분흡수에 미치는 영향 (Effects of the Limited Nutrient Supply at the Pollination Stage on the Growth and Nutrient Uptake of Muskmelon Grown in Rockwool)

  • 장홍기;정순주
    • 생물환경조절학회지
    • /
    • 제6권1호
    • /
    • pp.27-33
    • /
    • 1997
  • This experiment was carried out to investigate the effects of limited nutrient supply during 21 days before and after pollination stage on the growth, fruit quality and nutrient uptake of muskmelon in rockwool culture. Muskmelon, cv. Earl's Favorite seeds sowed on rockwool cube and transplanted on rockwool slab($90\times15\times7.5cm$) when 2 to 3 true leaf appeared on Sep. 6, 1991. Three kinds of nutrient composition recommended by Shizuoka university, combinated with the composition of Otsuka house A and composition Shizuoka III. One half of calcium nitrate(Ca(NO$_3$)$_2$.4$H_2O$) for limiting nitrogen supply during 21 days was treated and then fertigated the nutrient composition recommended by Shizuoka university up to harvest time. Trickling nozzles(Netafim Co. Israel) were used for fertigation of nutrient solution and noncirculating system was employed. Temperature was maintained $18^{\circ}C$ in night but 23 to $25^{\circ}C$ for 10 days after pollination for softening the fruit. The drainage ratio of nutrient solution was adjusted 20 to 30 percent. Fertigated and drained amount, and the pH and EC of nutrient solution were recorded. The concentrations of mineral elements including N, P, K, Ca, and Mg were analyzed and compared among treatments. In both autumn and winter cultivation, the limitation of nutrient supply by adjustment of nutrient composition(NO$_3$-N : 8meㆍ$\ell^{-1}$) caused the nutrient deficiency in muskmelon plant due to the limited nutrient supply. After pollination nutrient limitation by the lowering the nitrate retarded the over thickening of upper leaves of muskmelon but plant height and fresh weight of fruit were higher in the plot of nonlimited nutrient supply. The phenomena were attributed to the differences of the amount of nutrient uptake due to the limited time of nutrient solution, duration of nutrient supply and concentration of nutrient solution. These results suggested that increasing nutrient supply in the pollination stage was favorable for better appearance of fruit and improving fruit quality. Further trials would be required for the incre-ment of sugar degree of muskmelon grown in rockwool.

  • PDF

액제 정밀계량 장치를 이용한 양액 자동조제 시스템 개발 (Development of Automatic Nutrient-Solution Mixing System Using a Low-Cost and Precise Liquid Metering Device)

  • 이규철;류관희;이정훈;김기영;황호준
    • Journal of Biosystems Engineering
    • /
    • 제22권4호
    • /
    • pp.469-478
    • /
    • 1997
  • This study was conducted to develop an automatic nutrient-solution mixing system for small-scale sewers. The nutrient-solution mixing system consisted of a low-cost and precise metering device and data acquisition & control system with a personal computer. and, the metering device was composed of three parts those were supply pumps, metering cylinders and venturi tube. The system controlled electric conductivity(EC) and pH of nutrient-solution based on the time-based feedback control method with the information about temperature, EC, and pH of the nutrient-solution. The performance of the nutrient-solution mixing system was evaluated through the control of EC and pH while compared with those of commercial system. Also an experimental cultivation of tomato was conducted to verify and to improve the developed system. Results of this study were as follows. 1. The correlation coefficient of meteing device between the flow rate and operating time was 0.9999, and the linear reuession equation computed was y=21.759x, where y is the discharge($g$) and x is the operating time(s). 2. Calculated errors for the developed metering device and two commercial pump were $\pm$0.3% $\pm$2.45% and $\pm$1.38 % FS error respectively. 3. An automatic nutrient-solution mixing system based on a low-cost and precise metering device was developed. 4. The full scale errors of the developed system in controlling EC and pH at 23$\pm$1$^{\circ}C$ were $\pm$0.05mS/cm and $\pm$0.2, respectively 5. When using the commercial system, the controlled values of EC and pH of the 500 $\ell$ of water were 1.29 mS/cm and 6.1 pH for the setting points of 1.4 mS/cm and 6.0 pH respectively at 23$pm1^{\circ}C$. 6. The developed nutrient-solution control system showed $\pm$0.05 ms/cm of deviation from the setting EC value over the experimental cultivation period. 7. The deviation from the average values of Ca and Mg mass content in the several nutrient-solution were 0.5% and 1.8% respectively.

  • PDF