• 제목/요약/키워드: nutrient removal

Search Result 426, Processing Time 0.024 seconds

Fractionation of DOC and its Correlation to AOX(FP) in the Advanced ater Treatment Process (고도정수처리 공정에서 DOC 분획 특성 및 AOX(FP)와의 관계)

  • Lee, Byung-Cheun;Choi, Kyung-Hee;Choi, Ja-Yoon;Lee, Chul-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.909-918
    • /
    • 2009
  • As a part of dissolved organic matter, dissolved organic carbon (DOC) or biodegradable DOC (BDOC) fraction in particular is one of important issues in water treatment. Due to role as a nutrient source for bacteria, BDOC, therefore, may cause regrowth problems in water distribution system. The main objectives of this study were to investigate the possibility to minimize the concentration of BDOC in advance water treatment process. DOC in water is fractionized into four fractions such as AnBDOC (adsorbable and non-biodegradable DOC) which possesses adsorption properties but no biodegradation ability; nABDOC (biodegradable and non-adsorbable DOC) which has biodegradation properties but no adsorption ability; ABDOC (adsorbable and biodegradable DOC) which has adsorption properties and biodegradable characteristic; and non-removal DOC (nAnBDOC) which do not have either adsorbability or biodegradability. BAC process was effective for adsorbable DOC (AnBDOC+ABDOC) removal. However, in some cases, the removal ratio of adsorbable DOC was not sufficient. BDOC removal rate is very low or irremovable. Thus, for the control of residual DOC, it is necessary to change the operation condition by BAC process. From the analysis results of DOC fractions, water treatment processes appeared to be effective because it could grasp a remarkable amount of biodegradable, adsorbable and non-removal DOC. The concentration of AOX in non-prechlorination process was reduced from 7.1 ${\mu}g$/L to 0.51 ${\mu}g$/L in BAC process followed by ozonation.

Characteristics and Control of Microthrix Parvicella Bulking in Biological Nutrient Removal Plant (생물학적 영양소제거공정에서 Microthrix Parvicella에 의한 Bulking 특성 및 제어)

  • Lee, H.;Ahn, K.
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1101-1106
    • /
    • 2006
  • Many BNR (Biological Nutrient Removal) plants have experienced a bulking problem, mainly due to the growth of filamentous organisms, particularly during the winter months. This study investigated the problem of bulking due to the growth of M. parvicella both at a full-scale municipal wastewater treatment plant and a pilot scale plant located in the C city. The full-scale facility was operated at a flow rate of $51,000m^3/d$, an F/M (Food-to-Microorganism) ratio of 0.12 kgBOD/kgMLVSS/d and an SRT (Solids Retention Time) higher than 25 days, respectively. This plant experienced bulking and foaming problems at low temperatures below $15^{\circ}C$ since it was retrofitted with the BNR system in 2003. The pilot plant employed had an identical process configuration as the full scale one and used the same wastewater source. It was operated at a flow rate of $3.8m^3/d$, temperatures between 10 to $25^{\circ}C$ and SRTs between 10 and 25 days. At full scale, the M. parvicella growth and SVI (Sludge Volume Index) patterns were studied in conjunction with temperature variations. At pilot scale, DO and SRT variations were also explored, in addition to the filamentous bacteria growth and SVI patterns. During the full-scale investigation, over a 3 year period, it was noted that the SVI was maintained within acceptable operational values (i.e. under 160) during the summer months. Moreover settling in the secondary clarifiers was good and was not affected by the presence of M. parvicella. In contrast, at low mean temperatures during winter, the SVI increased to over 300. Overall, as the temperature decreased, the predominance of M. parvicella became apparent. According to this study, M. parvicella growth could be controlled and SVI could drop under 160 by a change in operational conditions which involved an increase in DO concentration between 2 and 4 mg/L and a decrease in SRT to less than 20 days.

Water Purification by Inorganic Ion Absorption Character of Water Lettuce (Pistia stratiotes L.) (물상추의 무기이온 흡수 특성을 이용한 수질정화)

  • Lee, Sung Chun;Lee, Jeong Sik
    • FLOWER RESEARCH JOURNAL
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • This study was conducted to investigate the efficiency of water quality remediation and the inorganic ion removal characteristics by floating plant; water lettuce (Pistia stratiotes L.) in a batch reactor. Water lettuce can be used to remove N and P and other inorganic nutrients, by consuming them in the form of plant nutrient. The highest nutrient absorption of water lettuce was $112.5meL^{-1}\;N$ in Sonneveld-2S, $56.6meL^{-1}\;N$ in Sonneveld-1S, $31.8meL^{-1}\;N$ in sewage and P value was also the highest in Sonneveld-2S as $15.6meL^{-1}$ and in sewage as $5.0meL^{-1}$. These results indicated that using water lettuce held some promise in the context of purification of eutrophication. Also water lettuce had a preference for absorption N. Under Sonneveld-2S treatment, nitrogen percentage was the highest in plant tissue due to the highest concentration of nitrogen and removal by water lettuce. Under sewage, percentage of total N in both plant parts was high. Both above and underground parts, P percentage was less than N. It might be due to the fact that the absorption amount of P was less than N by water lettuce. It meaned that the ability of N removal by water lettuce was higher than that of P, relatively. In summary, these results show that the use of this plant was a viable option.

Nutrient Uptake by Reeds Growing in Subsurface-flow Wetland Constructed to Purify Stream Water (하천수정화 여과습지에서 성장하는 갈대의 영양염류 흡수량)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.1
    • /
    • pp.89-99
    • /
    • 2006
  • The growth and biomass of reeds(Phragmites australis) growing in a subsurface treatment wetland system were investigated from April 2003 to October 2003. Nitrogen(N) and phosphorous(P) concentrations in above-ground(AG) and below-ground(BG) tissues of reeds were examined and the removal rate of N and P by reeds were analyzed. The system, 29 m in length, 9 m in width and 0.65 m in depth, was constructed in June 2001 on a floodplain in the down reach of the Kwangju Stream in Korea in order to purify polluted water of the stream. A bottom layer of 45 cm in depth was filled with crushed granites(15~30 mm in diameter) and a middle layer of 10 cm in depth was filled with pea pebbles(10 mm in diameter). An upper layer of 5 cm contained course sand. Reeds were transplanted on the surface of the system, which were dug out of natural wetlands, and their shoots were trimmed 40 cm in height. The height and density of the shoots averaged 237.7 cm and 244.0 shoot/$m^2$, respectively, when the reeds grew fully. The maximum biomass of AG and BG tissues were 1,964 and 1,577 g/$m^2$, respectively, and the AG : BG ratio of biomass was 1.26. Mean AG and BG dry weights were recorded as 1,355 and 748 g/$m^2$, respectively. The AG and BG tissue concentrations of N averaged 12.37 and 10.01 mg/g, respectively, and those of P 2.37 and 2.03 mg/g, respectively. Inflow to the system averaged 40 $m^3$/day. The concentrations of total nitrogen(T-N) in influent and effluent were 8.4 mg/L and 3.2 mg/L, respectively, and those of total phosphorous(T-P) were 0.73 and 0.38 mg/L, respectively. The total removal of T-N and T-P by the system during the investigation period averaged 140.2 and 9.7 g/$m^2$, respectively, and the total uptake of N and P by the reeds were calculated as 24.39 and 4.73 g/$m^2$, respectively. Average removals of about 17% of N and about 49% of P by reeds were recorded. The N and P concentrations in AG tissues were significantly different among the three zones of the system:near to inflow(St1), in the middle of system(St2), and near to outflow(St3). The N and P concentrations in BG tissues were also significantly different among St1, St2 and St3. N and P concentrations in AG and BG tissues of reeds growing in St1 were higher than those in St2 and St3. The height and density of shoots of reeds in St1 were larger than those in St2 and St3. Significant amounts of N and P in the influent were taken up by reeds in St1.

Production of Biodiesel and Nutrient Removal of Municipal Wastewater using a Small Scale Raceway Pond (미세조류 옥외 배양시스템을 이용한 바이오디젤 생산 및 도시하수 영양 염류 제거)

  • Kang, Zion;Kim, Byung-Hyuk;Oh, Hee-Mock;Kim, Hee-Sik
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.207-214
    • /
    • 2013
  • A concerted effort to develop alternative forms of energy is underway due to fossil fuel shortages and its deleterious effects. Recently, bioenergy from microalgae has gained prominence and the use of municipal wastewater as a low cost alternative for a nutrient source has significant advantages. In this study, we have employed municipal wastewater directly after primary treatment (primary settling basin) in a small scale raceway pond (SSRP) for microalgal growth. Indigenous microalgae in the wastewater were encouraged to grow in the SSRP under optimal conditions. The mean removal efficiencies of TN, TP, and $NH_3-N$ after 6 days were 77.77%, 63.55%, and 89.02%, respectively. The average lipid content of the microalgae was 19.51% of dry cell weight, and linolenate and linoleate (18:n) were the predominant fatty acids. The 18S rRNA gene analysis and microscopic observations of the indigenous microalgae community revealed the presence of Chlorella vulgaris and Scenedesmus obliquus as the dominant microalgae. These results indicate that untreated municipal wastewater, serving as an excellent nitrogen and phosphate source for microalgal growth, could be treated using microalgae in open raceway ponds. Moreover, microalgal biomass could be further profitable by the extraction of biodiesel.

Comparative Study on Biological Technology in Artificial Floating Island: Application of Media and Daphnia to Algal Biomass Control (인공부도의 생물학적 처리 기술 비교 연구: 인공부도의 조류의 저감 효과 개선을 위한 여재와 물벼룩 적용)

  • Jin, Mei-Yan;Chang, Kwang-Hyeon;Kim, Tae-Hoon;Oh, Jong-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.1
    • /
    • pp.83-91
    • /
    • 2018
  • Media (bio-stone), aquatic macrophytes (Oenanthe javanica) and herbivorous cladoceran (Daphnia similoides) have been used in artificial floating island (AFI) systems for water pollution control. Efficiency in chl-a concentration controlling of AFI was tested using different combinations of each device: G-BD-mixture bio-stone and Daphnia similoides, G-OB-mixture Oenanthe javanica and bio-stone, G-BOD-mixture bio-stone, Oenanthe javanica and Daphnia similoides, and the out-put water quality improvement was compared with G-C-control (no device was applied). We analyzed removal efficiency of chl-a concentration and nutrient concentrations in the artificially eutrophic water in the laboratory experimental facility. The results showed average removal rates of Chlorophyll a, TN and TP for different four groups: 69.24%, 16.61%, -0.61%; 68.39%, 14.11%, 10.52%; 78.30%, 6.69%, 25.09%; 35.42%, -3.47%, -25.18%, respectively. The results have suggested that the mixture of media, plants and zooplankton is the most efficient combination for Chlorophyll a control, while the mixture of macrophytes and bio-stone have better efficiency nutrient control.

Behavior of Nutrients along the Salinity Gradients in the Seomjin River Estuary (섬진강 하구역에서 염분경사에 따른 영양염의 거동)

  • KWON Kee-Young;MOON Chang-Ho;YANG Han-Seob
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.3
    • /
    • pp.199-206
    • /
    • 2001
  • Behavior of nutrients along the salinity gradients in the Seomjin River estuary was investigated in March July, September and November, 1999. Sampling sites were set based on the surface salinity during each cruise rather than geographic locations. The results suggest that source of nitrate and silicate was the Seomjin River discharge, while that of nitrite and phosphate was waste disposal from the Gwangynng Bay near the mouth of Seomjin River estuary. Ammonia was supplied inside the estuary at the region about $6\~8$ km far from Nancho Island. Strong removal behavior of some nutrient such as ammonia, phosphate and silicate was observed at $5\~15$ psu salinity area in November, where high concentrations of $chlorophyll\;a\;(>8{\mu}g/L$) occurred. High N : P ratios and entirely removal of phosphate at chlorophyll a peak region suggest that phosphate is the limiting factor for phytoplankton growth. Relatively high ratios of Rb to Ra (Rb: Fluorescence before acidification, Ra: Fluorescence after acidification) at $5\~15$ psu salinity region in November indicate that phytoplankton were in good physiological condition.

  • PDF

Determination of Nitrogen Balance of Agricultural Land among OECD Nutrient Balance Indexes (OCED 농업양분지표중 질소 균형지표 설정)

  • Lee, Chun-Soo;Kim, Pil-Joo;Park, Yang-Ho;Kwak, Han-Kang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.5
    • /
    • pp.347-355
    • /
    • 2000
  • To determine nitrogen balance (Input-Output) of Korea that was asked by Joint Working Party of the Committee for Agriculture and the Environment Policy Committee, OECD, nitrogen input and output were separately investigated as followings: nitrogen input included the amounts of chemical fertilizer consumption, cattle manure production, and biological nitrogen fixation in the national scale, and nitrogen output summed amounts withdrawn by crop and pasture harvesting, and crop residue removal, and lost by denitrification. In 1997, nitrogen balance of Korea was $158kg\;ha^{-1}$ and $211kg\;ha^{-1}$ on including and excluding denitrification loss, respectively. N balance excluded N loss by denitrification and N withdrawal by crop residues on nitrogen output was $250kg\;ha^{-1}$, which OECD asked to except two items from N balance determination because participants were not enough their data. Nitrogen balance was increased to 1.7~2.3 times in 1997 compared with 70 and $162kg\;ha^{-1}$ in 1985, which calculated on the condition of including denitrification and excluding denitrification and removal of crop residues in nitrogen output, respectively. This increase was caused mainly by increasing livestock manure production and chemical fertilizer consumption together with agricultural land area decrease. Nitrogen input was composed with 59% of chemical fertilizer. 42% of cattle manure and 5% of others in 1997, and output was with 73% of crop production, 23% of crop residue withdrawal and 4% of pasture production. Average nitrogen balance excluded N loss by denitrification and N withdrawals by crop residues in 1995~1997 calculated by OECD was $253kg\;ha^{-1}$, which was the second highest rank in OECD participants following $262kg\;ha^{-1}$ of Netherlands. Japanese N balance that has similar farming system with us was $135kg\;ha^{-1}$.

  • PDF

Physiological Responses of Porphyra yezoensis Ueda (Bangiales, Rhodophyta) Exposed to High Ammonium Effluent in a Seaweed-based Integrated Aquaculture System

  • Kang, Yun-Hee;Park, Sang-Rul;Oak, Jung-Hyun;Seo, Tae-Ho;Shin, Jong-Ahm;Chung, Ik-Kyo
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.1
    • /
    • pp.70-77
    • /
    • 2009
  • Porphyra yezoensis is known to act as a biofilter against nutrient-rich effluent in seaweed-based integrated aquaculture systems. However, few studies have examined its physiological status under such conditions. In this study, we estimated the photosynthetic activity of P. yezoensis by chlorophyll fluorescence of PSII (${\Delta}F/F'm$ and relative $ETR_{max}$) using the Diving-PAM fluorometer (Walz, Germany). In addition, bioremediation capacity, tissue nutrients, and C:N ratio of P. yezoensis were investigated. The ammonium concentration in seawater of seaweed tank 4 decreased from $72.1{\pm}2.2$ to $33.8{\pm}0.4{\mu}M$ after 24 hours. This indicates the potential role of P. yezoensis in removing around 43% of ammonium from the effluents. Tissue carbon contents in P. yezoensis were constant during the experimental period, while nitrogen contents had increased slightly by 24 hours. In comparison with the initial values, the ${\Delta}F/F'm$ and $rETR_{max}$ of P. yezoensis had increased by about 20 and 40%, respectively, after 24 hours. This indicates that P. yezoensis condition improved or remained constant. These results suggest that chlorophyll fluorescence is a powerful tool in evaluating the physiological status of seaweeds in a seaweed-based integrated aquaculture system.

Utilization of Soybean for Swine Diets (양돈 사료에 있어 대두의 이용)

  • Yoo, Jong-Sang;Kim, In-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.156-166
    • /
    • 2007
  • Soybean meal was widely used as a protein source in pig feedstuff because it has a good amino acid balance compared with other vegetable sources. However, soybeans contain trypsin inhibitors and other antinutritional factors which can lead to lower the digestibility of amino acid, and consequently reduce the growth performance. Heat treatment of soybeans is helpful shown to decrease the antinutritional factors and elicit an improved growth performance. Additionally, microbial processe using(HP 100, HP 200 and HP 300), and non-protein constituent removal are suggested to improve the growth performance and nutrient digestibility. Inadequate heat treatment of soybeans gives no damage to adult pig, but it has been shown to decrease nutrient digestibility in young pig. So, soy protein concentrate (SPC) and Isolated soy protein(ISP) were more widely used for nursery pigs than growing and finishing pigs, since SPC and ISP have similar characteristics as milk product.

  • PDF