• Title/Summary/Keyword: nutrient quality

Search Result 1,655, Processing Time 0.026 seconds

Changes in Fermentation Characteristics and Bacterial Communities of Whole Crop Rice Silage during Ensiling Period (저장기간에 따른 사료용 벼 사일리지의 발효특성 및 미생물상 변화)

  • Mirae Oh;Hyung Soo Park;Bo Ram Choi;Jae Hoon Woo;Seung Min Jeong;Ji Hye Kim;Bae Hun Lee
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.44 no.1
    • /
    • pp.1-5
    • /
    • 2024
  • Understanding changes in fermentation characteristics and microbial populations of forage silage during ensiling is of interest for improving the nutrient value of the feed for ruminants. This study was conducted to investigate the changes in fermentation characteristics and bacterial communities of whole crop rice (WCR) silage during the ensiling period. The chemical compositions, pH, organic acids and bacterial communities were evaluated at 0, 3, 6, and 12 months after ensiling. The bacterial communities were classified at both the genus and species levels. The dry matter content of WCR silage decreased with the length of storage (p<0.05), but there was no significant difference in crude protein and NDF contents. Following fermentation, the pH level of WCR silage was lower than the initial level. The lactic acid content remained at high levels for 3 to 6 months after ensiling, followed by a sharp decline at 12 months (p<0.05). Before fermentation, the WCR was dominated by Weissella (30.8%) and Pantoea (20.2%). Growth of Lactiplantibacillus plantarum (31.4%) was observed at 3 months after ensiling. At 6 months, there was a decrease in Lactiplantibacillus plantarum (10.2%) and an increase in Levilactobacillus brevis (12.8%), resulting in increased bacteria diversity until that period. The WCR silage was dominated by Lentilactobacillus buchneri (71.2%) and Lacticaseibacillus casei (27.0%) with a sharp reduction in diversity at 12 months. Overall, the WCR silage maintained satisfactory fermentation quality over a 12-month ensiling period. Furthermore, the fermentation characteristics of silage were found to be correlated to bacterial microbiome.

Estimation of Rice Cultivation Impacts on Water Environment with Environmental Characteristics and Agricultural Practices by Nitrogen Balances (질소수지에 의한 환경특성과 영농방법별 벼농사의 수질영향 평가)

  • Roh, Kee-An;Kim, Min-Kyeong;Ko, Byong-Gu;Kim, Gun-Yeob;Shim, Kyo-Moon;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.439-446
    • /
    • 2009
  • Nitrogen balance in the regional scale which was calculated the difference between nitrogen input and output was estimated to assess the impact of rice cultivation on water environment. Nitrogen balances in Gyeonggi province, where nitrogen concentration in irrigation water was high and in Chungnam province, where nitrogen absorbtion by rice was high, were -5.4 and -8.3 kg $-8.3kg\;ha^{-1}\;yr^{-1}$, respectively. Nitrogen balances of paddy field in Gangwon province, where nitrogen output was small and irrigation water was clean, and in Gyeongnam province, where organic matter content of soil was high and rice yield was low, were 4.9 and $14.0kg\;ha^{-1}\;yr^{-1}$, respectively. Average nitrogen balance and total nitrogen absorption of paddy field in Korea were estimated to $-0.3kg\;ha^{-1}\;yr^{-1}$ and $-3,315Mg\;yr^{-1}$, respectively. When the nitrogen concentration in irrigation water was increased by $1mg \;L^{-1}$, nitrogen balance of rice paddy changed by $-2.91kg\;ha^{-1}\;yr^{-1}$. Also, when nitrogen fertilizer applied was decreased from 110 to $90kg\;ha^{-1}$ and the same harvest was maintained, the nitrogen absorption by rice paddy from irrigation water was estimated to increase by 10,600 Mg per year in Korea. However, in cases, the harvest was reduced to either 90% or 85%, nitrogen balances were changed from -11.7 to -2.3 and $2.4kg\;ha^{-1}$, respectively. These results suggest that the reduction of nitrogen fertilizer use may not always lead to a negative nitrogen balance and sustainable agriculture can achieve by not cutting down the use of fertilizer only but by reduction of fertilizer application concurrently by maintenance of harvest and by utilization of environmental characteristics such as nutrient contents in irrigation water and soils.

Development of Crushing Device for Whole Crop Silage and the Characteristics of Crushed Whole Crop Silage (총체맥류 분쇄기 개발 및 분쇄 총체맥류 사일리지의 품질 특성)

  • Lee, Sunghyoun;Yu, Byeongkee;Ju, Sunyi;Park, Taeil
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.4
    • /
    • pp.344-349
    • /
    • 2016
  • This study was conducted to evaluate the possibility of expanding the usage of whole crop silage from beef cattle and dairy cow to hogs and chickens. For this purpose, a crushing device was developed to crush whole crop silage. The crushed silage was sealed, and analyzed for its feed value. The silage varieties used for the experiment included Saessal barley and Geumgang wheat. Whole crop barley and wheat were crushed in the crushing system as a whole without separating stems, leaves, grains, etc.. When the crushed whole crop silages (CWCS) were analyzed, full grain, grains above 10 mm in size, grains 5~10 mm in size, and grains below 5 mm in size accounted for, 20%, 4%, 27%, and 49 %, respectively. In order to facilitate the fermentation of CWCS, inoculated some fermenter into each CWCS sample (barley or wheat). As control, another set of sample was not inoculated. Crude protein (CP), ether extract (EE), crude fiber (CF), neutral detergent fiber (NDF), acid detergent fiber (ADF), lignin, cellulose content, total digestible nutrient (TDN), and relative feed value (RFV) of fermenter-inoculated Saessal barley were 2.45 %, 1.61%, 8.95%, 16.94%, 9.52%, 1.01%, 8.51%, 81.38%, and 447.5%, respectively. The CP, EE, CF, NDF, ADF, lignin, cellulose content, TDN, and RFV in the other sample of Saessal barley without inoculation of fermenter were 2.57%, 1.62%, 9.61%, 18.25%, 10.13%, 1.10%, 9.04%, 80.90%, and 412.9%, respectively. The CP, EE, CF, NDF, ADF, lignin, cellulose content, TDN, and RFV of fermenter-inoculated Geumgang wheat sample were 2.43%, 1.27%, 10.99%, 19.49%, 11.23%, 1.46%, 9.77%, 80.03%, and 382.6%, respectively. The CP, EE, CF, NDF, ADF, lignin, cellulose content, TDN, RFV of the other set sample of Geumgang wheat sample without the inoculation of fermenter were 2.28%, 1.44%, 10.08%, 18.02%, 10.44%, 1.26%, 9.18%, 80.65%, and 416.9%, respectively. The TDN and RFV content in the fermenter-inoculated Saessal barley were 81.38% and 447.5%, respectively, while the one in the fermenter-inoculated Geumgang wheat were 80.03% and 382.6% respectively. When the feed value of whole crop barley and wheat silage without crushing process was compared to the feed value of whole crop barley and wheat silage made from crushing system, the latter appeared to be higher than the former. This could be due to the process of sealing the crushed silage which might have minimized air content between samples and shortened the golden period of fermentation. In conclusion, these results indicate that a crushing process might be needed to facilitate fermentation and improve the quality of silage when making whole crop silage.

Agronomic Characteristics and Productivity of Winter Forage Crop in Sihwa Reclaimed Field (시화 간척지에서 월동 사료작물의 초종 및 품종에 따른 생육특성 및 생산성)

  • Kim, Jong Geun;Wei, Sheng Nan;Li, Yan Fen;Kim, Hak Jin;Kim, Meing Joong;Cheong, Eun Chan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.1
    • /
    • pp.19-28
    • /
    • 2020
  • This study was conducted to compare the agronomic characteristics and productivity according to the species and varieties of winter forage crops in reclaimed land. Winter forage crops used in this study were developed in National Institute of Crop Science, RDA. Oats ('Samhan', 'Jopung', 'Taehan', 'Dakyung' and 'Hi-early'), forage barley ('Yeongyang', 'Yuyeon', 'Yujin', 'Dacheng' and 'Yeonho'), rye ('Gogu', 'Jogreen' and 'Daegokgreen') and triticale ('Shinyoung', 'Saeyoung', 'Choyoung', 'Sinseong', 'Minpung' and 'Gwangyoung') were planted in the reclaimed land of Sihwa district in Hwaseong, Gyeonggi-do in the autumn of 2018 and cultivated using each standard cultivation method, and harvested in May 2019(oat and rye: 8 May, barley and triticale: 20 May.) The emergency rate was the lowest in rye (84.4%), and forage barley, oat and triticale were in similar levels (92.8 to 98.8%). Triticale was the lowest (416 tiller/㎡) and oat was the highest (603 tiller/㎡) in tiller number. Rye was the earliest in the heading date (April 21), triticale was April 26, and oat and forage barley were in early May (May 2 and May 5). The plant height was the highest in rye (95.6 cm), and triticale and forage barley was similar (76.3 and 68.3cm) and oat was the lowest (54.2 cm). Dry matter(DM) content of rye was the highest in the average of 46.04% and the others were similar at 35.09~37.54%. Productivity was different among species and varieties, with the highest dry matter yield of forage barley (4,344 kg/ha), oat was similar to barley, and rye and triticale were lowest. 'Dakyoung' and 'Hi-early' were higher in DM yield (4,283 and 5,490 kg/ha), and forage barley were higher in 'Yeonho', 'Yujin' and 'Dacheng' varieties (4,888, 5,433 and 5,582 kg/ha). Crude protein content of oat (6.58%) tended to be the highest, and TDN(total digectible nutrient) content (63.61%) was higher than other varieties. In the RFV(relative feed value), oats averaged 119, while the other three species averaged 92~105. The weight of 1,000 grain was the highest in triticale (43.03 g) and the lowest in rye (31.61 g). In the evaluation of germination rate according to the salt concentration (salinity), the germination rate was maintained at about 80% from 0.2 to 0.4% salinity. The correlation coefficient between germination and salt concentration was high in oat and barley (-0.91 and -0.92) and lowest in rye (-0.66). In conclusion, forage barley and oats showed good productivity in reclaimed land. Adaptability is also different among varieties of forage crops. When growing forage crops in reclaimed land, the selection of highly adaptable species and varieties was recommended.

Soil Physical Properties of Arable Land by Land Use Across the Country (토지이용별 전국 농경지 토양물리적 특성)

  • Cho, H.R.;Zhang, Y.S.;Han, K.H.;Cho, H.J.;Ryu, J.H.;Jung, K.Y.;Cho, K.R.;Ro, A.S.;Lim, S.J.;Choi, S.C.;Lee, J.I.;Lee, W.K.;Ahn, B.K.;Kim, B.H.;Kim, C.Y.;Park, J.H.;Hyun, S.H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.344-352
    • /
    • 2012
  • Soil physical properties determine soil quality in aspect of root growth, infiltration, water and nutrient holding capacity. Although the monitoring of soil physical properties is important for sustainable agricultural production, there were few studies. This study was conducted to investigate the condition of soil physical properties of arable land according to land use across the country. The work was investigated on plastic film house soils, upland soils, orchard soils, and paddy soils from 2008 to 2011, including depth of topsoil, bulk density, hardness, soil texture, and organic matter. The average physical properties were following; In plastic film house soils, the depth of topsoil was 16.2 cm. For the topsoils, hardness was 9.0 mm, bulk density was 1.09 Mg $m^{-3}$, and organic matter content was 29.0 g $kg^{-1}$. For the subsoils, hardness was 19.8 mm, bulk density was 1.32 Mg $m^{-3}$, and organic matter content was 29.5 g $kg^{-1}$; In upland soils, depth of topsoil was 13.3 cm. For the topsoils, hardness was 11.3 mm, bulk density was 1.33 Mg $m^{-3}$, and organic matter content was 20.6 g $kg^{-1}$. For the subsoils, hardness was 18.8 mm, bulk density was 1.52 Mg $m^{-3}$, and organic matter content was 13.0 g $kg^{-1}$. Classified by the types of crop, soil physical properties were high value in a group of deep-rooted vegetables and a group of short-rooted vegetables soil, but low value in a group of leafy vegetables soil; In orchard soils, the depth of topsoil was 15.4 cm. For the topsoils, hardness was 16.1 mm, bulk density was 1.25 Mg $m^{-3}$, and organic matter content was 28.5 g $kg^{-1}$. For the subsoils, hardness was 19.8 mm, bulk density was 1.41 Mg $m^{-3}$, and organic matter content was 15.9 g $kg^{-1}$; In paddy soils, the depth of topsoil was 17.5 cm. For the topsoils, hardness was 15.3 mm, bulk density was 1.22 Mg $m^{-3}$, and organic matter content was 23.5 g $kg^{-1}$. For the subsoils, hardness was 20.3 mm, bulk density was 1.47 Mg $m^{-3}$, and organic matter content was 17.5 g $kg^{-1}$. The average of bulk density was plastic film house soils < paddy soils < orchard soils < upland soils in order, according to land use. The bulk density value of topsoils is mainly distributed in 1.0~1.25 Mg $m^{-3}$. The bulk density value of subsoils is mostly distributed in more than 1.50, 1.35~1.50, and 1.0~1.50 Mg $m^{-3}$ for upland and paddy soils, orchard soils, and plastic film house soils, respectively. Classified by soil textural family, there was lower bulk density in clayey soil, and higher bulk density in fine silty and sandy soil. Soil physical properties and distribution of topography were different classified by the types of land use and growing crops. Therefore, we need to consider the types of land use and crop for appropriate soil management.