• Title/Summary/Keyword: nutrient limitation

Search Result 93, Processing Time 0.027 seconds

Assessment of Nutrient and Light Limitation of Phytoplankton in the Youngsan Lake (영산호 식물플랑크톤 변동에 대한 영양염과 광 제한의 상대적 평가)

  • Song, Eun-Sook;Shin, Yong-Sik;Jang, Nam-Ik;Lee, Jun-Bae
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.35-43
    • /
    • 2010
  • Nutrient limitation and light limitation was examined for the Youngsan Lake by collecting chlorophyll $\alpha$ and other properties including light intensity, nutrient concentrations, pheopigment ratio monthly from March, 2003 to April, 2004 (except for November-January). Chlorophyll $\alpha$ was fractionated into net-(>$20\;{\mu}m$) and nano-size(<$20\;{\mu}$). Light and nutrient limitation index was calculated based on the equations incorporating the mechanisms of limitation of light and nutrients from the literature. Phytoplankton population (chlorophyll $\alpha$) was low during the wet season especially in August and increased in short-period during other seasons. Photoperiod was short during the wet season but long during the dry season. Nutrients such as phosphate and ammonium were rapidly increased in spring, 2004. Light limitation index was minimum (0.01) in August during the wet season and nutrient limitation index was relatively high (>0.4) except for May and September. Light limitation may affect phytoplankton growth rather than nutrient limitation considering that nutrient levels are high in the Youngsan Lake. Results of correlation analyses showed a negative correlation between light and nutrient limitation indices and net-pheopigment index, and a positive correlation between the indices and nano-pheopigment index. These results suggest that phytoplankton response to change of light and nutrient may be size-dependant.

Evaluating Limiting Nutrients through Long-term Data Analyses and Bioassay Experiments in Cheonsu Bay and Taean Sea (장기자료 분석과 생물검정실험을 이용한 천수만과 태안해역의 제한영양염 평가)

  • Kim, Jin Hyun;Jeong, Won Ok;Shin, Yongsik;Jeong, Byungkwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.459-468
    • /
    • 2022
  • Long-term data analyses and bioassay experiments were conducted to assess limiting nutrients in Cheonsu Bay and Taean sea. First, long-term nutrient data (2004-2016) provided by the National Water Quality Monitoring Network were used to assess potential limiting nutrients. Analysis of the long-term data showed that the dissolved inorganic nitrogen/dissolved inorganic phosphate (DIN/DIP) ratio was mostly below 16, with N limitation being dominant. A subsequent analysis using the concentration ratios of N, P, and Si showed that N limitation was dominant during summer and autumn but that Si limitation occasionally occurred during winter and spring in relatively limited areas. However, the dominant limiting nutrient was not determined. The nutrient analysis of the field water collected during the bioassay experiment showed that DIN/DIP revealed P limitation at all stations in March and May, whereas N limitation was dominant in July and October. In the analysis using the concentration ratios of N, P, and Si, P and Si limitation appeared in March and May, but there were points with no dominant limiting nutrient. However, N limitation was dominant in July and October. In the bioassay experiment for assessment of the actual limiting nutrient, the results showed no specific limiting nutrient in March, whereas NH4+ and NO3- showed responses in May, July, and October, which confirmed that N was a substantial limiting nutrient directly involved in phytoplankton growth during this period.

Effect of Nutrient Limitation on Lipid Content and Fatty Acid Composition of Mutant Chlamydomonas reinhardtii (돌연변이 Chlamydomonas reinhardtii의 영양분 제한에 따른 지질 생산 및 지방산 조성 변화 연구)

  • Baek, Jaewon;Choi, Jong-il
    • KSBB Journal
    • /
    • v.30 no.2
    • /
    • pp.91-95
    • /
    • 2015
  • Production of biodiesel from microalgae is dependent on the microalgal lipid content and free fatty acid composition. Both lipid and free fatty acid are regulated by nutrient sources. In this study, newly developed mutant Chlamydomonas reinhardtii with higher lipid content was investigated for the effect of nutrient limitation. Nitrogen $NO_3{^{-}}$ and phosphate $PO_4{^{3-}}$ were limited for nutrient starvation during the cultivation. Under nutrient starvation, total lipid content level was increased to 27~33% and C16:0 fatty acid content constituted over 31~43% of total fatty acid. Interestingly, we also found that the expression of fatty acid desaturase (FAD7) was decreased when nutrients were starved.

Distributional characteristics of phytoplankton and nutrient limitation during spring season in Jinhae Bay (춘계 진해만에서 식물플랑크톤 증식과 제한영양염 분포특성)

  • Son, Moonho;Kim, Dongseon;Baek, Seung Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3345-3350
    • /
    • 2014
  • We investigated to assess the relationships between the major nutrients and phytoplankton dynamics during the spring season in 2010 and 2011 at 23 stations in Jinhae Bay, Korea. The bay is divided into four different zones based on pollutant sources and geographical characteristics. Nutrient limitation (>80%) was significant in Zone II, which is located in central bay and is influenced by the water well mixed from outer bay. The limited nutrient was followed in Zone III and IV that was occupying between 17% and 83%. However, the low levels are being kept below 35% in Zone I, which is characterized by the semi-enclosed eutrophic area of Masan and Haegam bays. Based on the PCA (principle component analysis) analysis, the nitrogen (N) sources in 2010 were particularly dominant and it may be due to the water mixing and wastewater formed from bottom layers and sewage. In 2011, major nutrients including nitrogen, silicon and phosphorus were dominant in the bay and are supplied by the river discharge after rainfalls with low salinity conditions. In particular, the N nutrients being supplied in 2010 are correlated with pennate diatoms Pseudo-nitzchia spp. and is not related to the phytoplankton population densities in 2011. The present study suggests that N sources play an important role in the proliferation of diatom, and the rapid nutrient uptakes by them are potential nutrient limitation factors in the bay.

Effects of the Limited Nutrient Supply at the Pollination Stage on the Growth and Nutrient Uptake of Muskmelon Grown in Rockwool (온실멜론의 암면재배에 있어서 수분기의 양분공급제한이 생육 및 양분흡수에 미치는 영향)

  • 장홍기;정순주
    • Journal of Bio-Environment Control
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 1997
  • This experiment was carried out to investigate the effects of limited nutrient supply during 21 days before and after pollination stage on the growth, fruit quality and nutrient uptake of muskmelon in rockwool culture. Muskmelon, cv. Earl's Favorite seeds sowed on rockwool cube and transplanted on rockwool slab($90\times15\times7.5cm$) when 2 to 3 true leaf appeared on Sep. 6, 1991. Three kinds of nutrient composition recommended by Shizuoka university, combinated with the composition of Otsuka house A and composition Shizuoka III. One half of calcium nitrate(Ca(NO$_3$)$_2$.4$H_2O$) for limiting nitrogen supply during 21 days was treated and then fertigated the nutrient composition recommended by Shizuoka university up to harvest time. Trickling nozzles(Netafim Co. Israel) were used for fertigation of nutrient solution and noncirculating system was employed. Temperature was maintained $18^{\circ}C$ in night but 23 to $25^{\circ}C$ for 10 days after pollination for softening the fruit. The drainage ratio of nutrient solution was adjusted 20 to 30 percent. Fertigated and drained amount, and the pH and EC of nutrient solution were recorded. The concentrations of mineral elements including N, P, K, Ca, and Mg were analyzed and compared among treatments. In both autumn and winter cultivation, the limitation of nutrient supply by adjustment of nutrient composition(NO$_3$-N : 8meㆍ$\ell^{-1}$) caused the nutrient deficiency in muskmelon plant due to the limited nutrient supply. After pollination nutrient limitation by the lowering the nitrate retarded the over thickening of upper leaves of muskmelon but plant height and fresh weight of fruit were higher in the plot of nonlimited nutrient supply. The phenomena were attributed to the differences of the amount of nutrient uptake due to the limited time of nutrient solution, duration of nutrient supply and concentration of nutrient solution. These results suggested that increasing nutrient supply in the pollination stage was favorable for better appearance of fruit and improving fruit quality. Further trials would be required for the incre-ment of sugar degree of muskmelon grown in rockwool.

  • PDF

Effects of Nutrient Property Changes on Summer Phytoplankton Community Structure of Jangmok Bay (장목만에서 여름철 영양염 특성 변화가 식물플랑크톤 군집구조에 미치는 영향)

  • Jang, Pung-Guk;Jang, Min-Chul;Lee, Woo-Jin;Shin, Kyoung-Soon
    • Ocean and Polar Research
    • /
    • v.32 no.2
    • /
    • pp.97-111
    • /
    • 2010
  • Phytoplankton production is affected by various physico-chemical factors of environment. However, one of the most critical factors generally accepted as controlling primary production of phytoplankton is nutrients. It has recently been found that the succession of phytoplankton groups and species are closely related to the chemical properties of ambient water including nutrient limitation and their ratios. In Jangmok Bay, silicate and nitrate are primarily supplied by rainfall, while phosphate and ammonia are supplied by wind stress. Typhoons are associated with rainfall and strong wind stress, and when typhoons pass through the South Sea, such events may induce phytoplankton blooms. When nutrients were supplied by heavy rainfalls during the rainy season and by summer typhoons in Jangmok Bay, the dominant taxa among the phytoplankton groups were found to change successively with time. The dominant taxon was changed from diatoms to flagellates immediately after the episodic seasonal events, but returned to diatoms within 3~10 days. Pseudo-nitzschia spp. were dominant mainly in the presence of low phosphate levels during the first of the survey which included the rainy season, while Skeletonema costatum was dominant when phosphate concentrations were high due to the strong wind stress during the latter half of the survey as a result of the typhoon. The competition between S. costatum and Chaetoceros spp. appeared to be regulated by the silicate concentration. S. costatum preferred high silicate and phosphate concentrations; however, Chaetoceros spp. were able to endure low silicate concentrations. These results implied that, in coastal ecosystems, the input patterns of each nutrient supplied by rainfall and/or wind stress appeared to contribute to the summer succession of phytoplankton groups and species.

Characteristics of Horizontal Community Distribution and Nutrient Limitation on Growth Rate of Phytoplankton during a Winter in Gwangyang Bay, Korea (동계 광양만에서 식물플랑크톤 군집구조의 수평적 분포특성과 성장에 미치는 영양염 제한 특성)

  • Baek, Seung-Ho;Kim, Dong-Sun;Hyun, Bong-Gil;Choi, Hyun-Woo;Kim, Young-Ok
    • Ocean and Polar Research
    • /
    • v.33 no.2
    • /
    • pp.99-111
    • /
    • 2011
  • To estimate the effects of limitation nutrients for phytoplankton growth and its influences on short-term variations of a winter phytoplankton community structure, we investigated the abiotic and biotic factors of surface and bottom waters at 20 stations of inner and offshore areas from 6 to 7 February in Gwangyang Bay, Korea. Also, several algal bio-assay studies were conducted to identify any additional nutrient effects on phytoplankton assemblage using surface water for the assay. The dominant species in the bay was diatom Skeletonema costatum, which occupied more than 70% of total species in most stations (St.1-16) of the inner bay. According to a cluster and multidimensional scaling (MDS) analysis based on phytoplankton community data from each station, the bay was divided into three groups. The first group included stations from the south-western parts of Myodo lsland, which can be characterized as a semien-closed eutrophic area with high phytoplankton abundance. The second group included most stations from the north-eastern part of Myodo lsland, influenced indirectly by surface water currents from offshore of the bay. The standing phytoplankton crops were lower than those of the first group. The other cluster was restricted to samples collected from offshore of the bay. In the bay, silicon (Si) and phosphorus (P) were not a major limiting factor for phytoplankton production. However, since the DIN: DIP and DSi: DIN ratios clearly demonstrated that there were potential stoichiometric N limitations, nitrogen (N) was considered as a limiting factor. Based on the algal bio-assay, in vivo fluorescence values in N (+) added experiments were higher compared to control and P added experiments. Our results suggested that nitrogen may act as one of the most important factors in controlling primary production during winter in Gwangyang Bay.

Global Occurrence of Harmful Cyanobacterial Blooms and N, P-limitation Strategy for Bloom Control (유해 남조류의 세계적 발생현황 및 녹조제어를 위한 질소와 인-제한 전략)

  • Ahn, Chi-Yong;Lee, Chang Soo;Choi, Jae Woo;Lee, Sanghyup;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Increased harmful algal blooms by cyanobacteria are threatening public health and limiting human activities related with freshwater ecosystems. Phosphorus (P) has long been suggested as a critical nutrient for cyanobacterial bloom through field research in Canada during the 1970s, proposing a P-based freshwater management guideline. However, recently, nitrogen (N) has also been highlighted as an impacting nutrient on cyanobacterial harmful algal blooms (CyanoHABs). Due to the intensive and frequent observation of Microcystis, this kind of paradigm shift from P limitation to season-dependent N or P limitation has an important implication for a dual nutrient management strategy in eutrophic freshwaters. Through recent international researches, general strategies to control CyanoHABs in lakes and reservoirs are as follows: a dual nutrient (N & P) reduction, wastewater collection and treatment, pre-treatment of influent water in buffer zones, dredging of sediment, reduction of residence time, algal collection, and precipitation and flocculation of cyanobacteria. In addition, sustainable and integrative freshwater algae management should be carried out, based on the ecological aspect, because cyanobacteria are not the target organism to be eradicated, but an essential microbial member in the freshwater ecosystem.

Short-Term Nutrient Enrichment Bioassays and Nutrient Limitation in Daechung Reservoir (대청호에서의 단기 영양염 첨가 실험 및 제한 영양염류 분석)

  • Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.136-141
    • /
    • 2010
  • In situ experiments of Nutrient Enrichment Bioassays (NEBs) were conducted in the field along with in the laboratory to determine which nutrient limited phytoplankton growth as a indicator of primary productivity. For the NEBs, the water was sampled using a polyethylene-lined container and dispensed into 6 L water tank in the laboratory. The control (C, no nutrient spike) and six treatments of phosphorus (P), 2-fold phosphorus (2P), 4-fold phosphorus (4P), nitrate nitrogen ($NO_3$-N), 2-fold nitrate nitrogen ($2NO_3$-N), and phosphorus and nitrate nitrogen (P+$NO_3$-N) were set up in the lacustrine zone near the dam site, Daechung Reservoir in September, 2009 and analyzed the diel changes of total nitrogen (TN), total phosphorus (TP), and chlorophyll-$\alpha$ (Chl-$\alpha$) in the cubitainers. The short-term NEBs showed that algal response in the treatments spiked phosphorus (P, 2P, and 4P) were significantly (p < 0.05) greater than the response in the control (C), and nitrogen-spike. Also, the response in 4P-treatment was greater than those in the P- and 2P-treatments. In contrast, there was no significant differences (p > 0.20) between the $NO_3$-N and $2NO_3$-N treatment. The outcomes of the NEBs suggest that phosphorus limited the phytoplankton growth and nitrogen was not limited in this system. Furthermore, in the N + P treatments, the response was minimum, compared to all other treatments and the control, indicating that even if the system is evidently P-limited system, when added the nitrogen, the response showed the inhibition. Also, > 95% of observed long-term TN:TP ratios in the ambient water showed > 17, which is the criteria of P-limitation, supporting the P-limitation in the system. Overall, these results suggest that phytoplankton biomass near the dam is a direct linear function of P-loading near the watershed, if the phosphorus pool is mainly dissolved fraction.

Quantitative analysis of Spirulina platensis growth with CO2 mixed aeration

  • Kim, Yong Sang;Lee, Sang-Hun
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.216-222
    • /
    • 2018
  • The growth characteristics of Spirulina platensis were investigated using four photo-bioreactors with $CO_2$-mixed air flows. Each reactor was operated under a specific condition: 3% $CO_2$ at 50 mL/min, 3% $CO_2$ at 150 mL/min, 6% $CO_2$ at 50 mL/min, and 6% CO2 at 150 mL/min. The 3% $CO_2$ at 150 mL/min condition produced the highest algal growth rate, while the 6% $CO_2$ at 150 mL/min conditioned produced the lowest. The algal growth performance was suitably assessed by the linear growth curve rather than the exponential growth. The medium pH decreased from 9.5 to 8.7-8.8 (3% $CO_2$) and 8.4-8.5 (6% $CO_2$), of which trends were predicted only by the pH-carbonate equilibrium and the reaction kinetics between dissolved $CO_2$ and $HCO_3{^-}$. Based on the stoichiometry between the nutrient amounts and cell elements, it was predicted that depleted nitrogen (N) at the early stage of the cultivation would reduce the algal growth rates due to nutrient starvation. In this study, use of the photobioreactors capable of good light energy distribution, proper ranges of $CO_2$ in bubbles and medium pH facilitated production of high amounts of algal biomass despite N limitation.