• Title/Summary/Keyword: nutrient change

Search Result 549, Processing Time 0.026 seconds

STUDIES ON THE VARIATION OF MICROFLORA DURING THE FERMENTATION OF ANCHOVY, ENGRAULIS JAPONICA (멸치 젓갈 숙성에 따른 미생물상의 변화에 대하여)

  • LEE Jong-Gap;CHOE Wi-Kyune
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.7 no.3
    • /
    • pp.105-114
    • /
    • 1974
  • Identification and change of microflora during the fermentation of anchovy Engraulis japonica, under the halophilic circumstance were investigated. The change of salinity and pH in meat and juice which decide the environment for microorganism and decomposition of nitrogenous compound which functions as a nutrient source were also discussed by measuring the content of total-N, amino-N, nonprotein-N, TMA and VBN, The fresh anchovy was mixed with rock salt (20 percent w/w) and stocked for six months. Through the fermentation lag phase of viable cells extended for 20 days that was obviously larger compared with other circumstances, hereafter increased to reach the maximum value of $5\times10^4$ total count per gram at 35 day stock. The stationary phase proceeded for 25 days. 540 strains were isolated and among them 11 genus of bacteria, 3 genus of yeasts, were identified and other 2 yeast strains of unidentified. At the initial stage of fermentation, Pseudomonas, and Helobacterium prevalently grew, at the middle stage, they disappeared rapidly and Pediococcus and yeasts completely dominated, where they are assumed to get directly involved with fermentation of fish, The PH value tended to decrease in the progress of fermentation and at 100 day stock it showed the minimum value of 5.5 to 5.6 in both meat and juice. The highest salinity of meat decreased to 18 percent, while in juice it decreased to 28 percent since 50 days stock. The content of total-N in meat gradually decreased to 2.8 percent, while in juice it increased to 2.3 percent at 100 day stock, However nonprotein-N was 1.8 percent and amino-N was 1.1 Percent. Since 100 days stock, the increasing rate of amino-M is too low it could be judged to entered the final stage of fermentation, In the first 20 days stock, the increase of VBN and TMA can be explained by the growth of putrefactive bacteria such as pseudomonas on the meat before salts penetrate into the fish meat, while reincrement after 100 days stock, is explained by decomposition of free amino acid due to the reactions of bacteria and enzymes.

  • PDF

Change of Weed Community in No-till Corn with Legume Cover Crops as Living Mulch (콩과 피복작물 리빙멀치에 따른 옥수수 무경운 재배지의 잡초군락 변화)

  • Choi, Bong-Su;Kim, Chung-Guk;Seong, Ki-Yeong;Song, Duk-Young;Jeon, Weon-Tai;Cho, Hyun-Suk;Jeong, Kwang-Ho;Kang, Ui-Gum
    • Korean Journal of Weed Science
    • /
    • v.31 no.1
    • /
    • pp.34-40
    • /
    • 2011
  • Cover crop can be used to suppress weeds by competition for light and nutrient. Objective of this study was to evaluate the effectiveness of legume cover crops on change of weed community in no-till corn cultivation. Two legume cover crops, hairy vetch and crimson clover were grown in the field, and succeeding corn was sown on 4 May, 2010. The distribution of weed was surveyed at 15 April, 1 June, and 20 August. At 15 April, the weed biomass in hairy vetch field was higher than in crimson clover field. The dominant weeds were Capsella bursa-pastoris L. and Stellaria aquatica L. in hairy vetch and crimson clover fields, respectively. At vegetative stage of corn, occurred weeds in hairy vetch and crimson clover fields were four and six species, respectively, while the weed was occurred with nine species in conventional. Also the dry weight of weed was decreased by 82 and 75% in hairy vetch and crimson clover fields compared to conventional. On the other hand, after harvest of corn, occurred weed in hairy vetch, crimson clover and conventional was five, four and five species, respectively. Dry weight percentage of occurred weed in conventional was 23.5%, and the value was higher than 13.8 and 14.7% in hairy vetch and crimson clover fields, respectively. Stellaria aquatica L. as winter annual weed only occurred in cover crop field during corn growing season. It is these possibilities that low soil temperature and light interception by soil cover of legume cover crop.

Dietary behavior and nutritional status among Chinese female college students residing in Korea (재한 중국 유학 여대생들의 식습관 변화에 따른 영양 섭취 실태)

  • Gaowei, Gaowei;Kim, Soyeon;Chang, Namsoo;Kim, Ki Nam
    • Journal of Nutrition and Health
    • /
    • v.46 no.2
    • /
    • pp.177-185
    • /
    • 2013
  • The purpose of this study was to analyze the nutritional status of Chinese female college students in Korea, and to investigate changes in their dietary behavior after residing in Korea. The subjects included 114 Chinese female college students currently studying in Korea. General characteristics and dietary behaviors before and after residing in Korea were investigated. Daily nutrients and food intake were assessed using a one-day 24-hour recall. Consumption of most nutrients, namely calcium, iron, zinc, vitamin $B_2$, vitamin C, and folate was estimated to fall below the EAR for the Korean population. The proportions of subjects whose intake were estimated below the EAR for folate, calcium, vitamin $B_2$, iron, zinc, and vitamin C were 93.0%, 71.9%, 66.7%, 65.8%, 65.8%, and 63.2%, respectively. In the current study, the dietary behavior scores fell significantly after Chinese students immigrated to Korea (p < 0.001); increased frequency of meal skipping, less consumption of fruits and vegetables, irregular meal pattern, and imbalanced diet were some of the significant changes among Chinese students before and after residing in Korea. In addition, consumption of most nutrients, including dietary fiber, vitamin A, vitamin B group, vitamin C, and folate in the Worsened Group was significantly lower, compared with the No Change Group (p < 0.05). According to the changes in dietary behaviors, consumption of most nutrients, including dietary fiber, vitamin A, vitamin B group, vitamin C, and folate in the Worsened Group was significantly lower than in the No Change Group (p < 0.05). In conclusion, these results indicated that Chinese students practiced more unhealthy dietary behaviors after residing in Korea and Chinese students residing in Korea showed poor nutrient-based diet quality. Conduct of a follow-up study using blood profile tests is needed in order to assess the nutritional status of Chinese students. These results would be used in planning of a nutritional surveillance program for Chinese students.

Comparative Study on the Productivity and Quality of Hilly Pasture by Management type (경영형태별 산지 초지의 생산성 및 사료가치 비교 연구)

  • Kim, Jong Geun;Liu, Chang;Zhao, Guoqiang;Park, Hyung Soo;Jeong, Jong Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.1
    • /
    • pp.45-52
    • /
    • 2019
  • This experiment was carried out to study the change of productivity and feed value in different types of hilly pasture. The pasture utilized in the experiment was placed on the experimental farm of Pyeongchang Campus of Seoul National University. Forage production type(FP; Orchardgrass 18 + Tall Fescue 12 + Timothy 5 + White clover 5 kg/ha) and Public farm type(PF: Orchardgrass 12 + Tall Fescue 18 + Timothy 5 + White clover 5 kg/ha) pasture were established in September 3, 2014 and utilized (cutting or grazing) four times every year. Growth characteristics, yield and forage quality were investigated for two years. Plant height of grasses was the highest in the $1^{st}$ cutting and legumes was in the $2^{nd}$ cutting. Dry matter (DM) content was highest at every the $1^{st}$ cut grasses significantly lower at the $2^{nd}$ harvest (p<0.05). However, there was no significant difference in the $2^{nd}$, $3^{rd}$ and $4^{th}$ harvest in 2016. In the botanical composition change, the portion of legume was gradually increased after pasture establishment and the ratio of weed and bare land was higher at $2^{nd}$ and $3^{rd}$ cutting, but it was decreased at $4^{th}$ harvest. There was no significant difference in 2016 of fresh yield between two farm types (p>0.05). The yield of dry matter showed similar trend of fresh yield and forage production type was higher than that of public farm type (p<0.05). The forage intake by livestock was 1,452 kg/ha in 2015 and 1,743 kg/ha in 2016. Pasture utilization ratio of public farm type pasture was highest in the $3^{rd}$ grazing time. Forage quality of pasture in relation to management type had not significant difference, but there was difference in harvest times. Crude protein (CP) was the lowest in the $1^{st}$ harvest and total digestible nutrient (TDN) was highest in the $1^{st}$ harvest and lowest in the $4^{th}$ harvest. Based on the above results, it is found that the establishment of pasture suitable for farm's situation is important for set up of Korean model of hilly pasture. Although the forage production type is superior on forage productivity, it is recommended that the results will be provided as basic data for management of public farm type in the future.

Comprehensive Review on the Implications of Extreme Weather Characteristics to Stormwater Nature-based Solutions (자연기반해법을 적용한 그린인프라 시설의 극한기후 영향 사례분석)

  • Miguel Enrico L. Robles;Franz Kevin F. Geronimo;Chiny C. Vispo;Haque Md Tashdedul;Minsu Jeon;Lee-Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.353-365
    • /
    • 2023
  • The effects of climate change on green infrastructure and environmental media remain uncertain and context-specific despite numerous climate projections globally. In this study, the extreme weather conditions in seven major cities in South Korea were characterized through statistical analysis of 20-year daily meteorological data extracted fro m the Korea Meteorological Administration (KMA). Additionally, the impacts of extreme weather on Nature-based Solutions (NbS) were determined through a comprehensive review. The results of the statistical analysis and comprehensive review revealed the studied cities are potentially vulnerable to varying extreme weather conditions, depending on geographic location, surface imperviousness, and local weather patterns. Temperature extremes were seen as potential threats to the resilience of NbS in Seoul, as both the highest maximum and lowest minimum temperatures were observed in the mentioned city. Moreover, extreme values for precipitation and maximum wind speed were observed in cities from the southern part of South Korea, particularly Busan, Ulsan, and Jeju. It was also found that extremely low temperatures induce the most impact on the resilience of NbS and environmental media. Extremely cold conditions were identified to reduce the pollutant removal efficiency of biochar, sand, gravel, and woodchip, as well as the nutrient uptake capabilities of constructed wetlands (CWs). In response to the negative impacts of extreme weather on the effectiveness of NbS, several adaptation strategies, such as the addition of shading and insulation systems, were also identified in this study. The results of this study are seen as beneficial to improving the resilience of NbS in South Korea and other locations with similar climate characteristics.

Phytoplankton Diversity and Community Structure Driven by the Dynamics of the Changjiang Diluted Water Plume Extension around the Ieodo Ocean Research Station in the Summer of 2020 (2020년 하계 장강 저염수가 이어도 해양과학기지 주변 해역의 식물플랑크톤 다양성 및 개체수 변화에 미치는 영향)

  • Kim, Jihoon;Choi, Dong Han;Lee, Ha Eun;Jeong, Jin-Yong;Jeong, Jongmin;Noh, Jae Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.924-942
    • /
    • 2021
  • The expansion of the Changjiang Diluted Water (CDW) plume during summer is known to be a major factor influencing phytoplankton diversity, community structure, and the regional marine environment of the northern East China Sea (ECS). The discharge of the CDW plume was very high in the summer of 2020, and cruise surveys and stationary monitoring were conducted to understand the dynamics of changes in environmental characteristics and the impact on phytoplankton diversity and community structure. A cruise survey was conducted from August 16 to 17, 2020, using R/V Eardo, and a stay survey at the Ieodo Ocean Research Station (IORS) from August 15 to 21, 2020, to analyze phytoplankton diversity and community structure. The southwestern part of the survey area exhibited low salinity and high chlorophyll a fluorescence under the influence of the CDW plume, whereas the southeastern part of the survey area presented high salinity and low chlorophyll a fluorescence under the influence of the Tsushima Warm Current (TWC). The total chlorophyll a concentrations of surface water samples from 12 sampling stations indicated that nano-phytoplankton (20-3 ㎛) and micro-phytoplankton (> 20 ㎛) were the dominant groups during the survey period. Only stations strongly influenced by the TWC presented approximately 50% of the biomass contributed by pico-phytoplankton (< 3 ㎛). The size distribution of phytoplankton in the surface water samples is related to nutrient supplies, and areas where high nutrient (nitrate) supplies were provided by the CDW plume displayed higher biomass contribution by micro-phytoplankton groups. A total of 45 genera of nano- and micro-phytoplankton groups were classified using morphological analysis. Among them, the dominant taxa were the diatoms Guinardia flaccida and Nitzschia spp. and the dinoflagellates Gonyaulax monacantha, Noctiluca scintillans, Gymnodinium spirale, Heterocapsa spp., Prorocentrum micans, and Tripos furca. The sampling stations affected by the TWC and low in nitrate concentrations presented high concentrations of photosynthetic pico-eukaryotes (PPE) and photosynthetic pico-prokaryotes (PPP). Most sampling stations had phosphate-limited conditions. Higher Synechococcus concentrations were enumerated for the sampling stations influenced by low-nutrient water of the TWC using flow cytometry. The NGS analysis revealed 29 clades of Synechococcus among PPP, and 11 clades displayed a dominance rate of 1% or more at least once in one sample. Clade II was the dominant group in the surface water, whereas various clades (Clades I, IV, etc.) were found to be the next dominant groups in the SCM layers. The Prochlorococcus group, belonging to the PPP, observed in the warm water region, presented a high-light-adapted ecotype and did not appear in the northern part of the survey region. PPE analysis resulted in 163 operational taxonomic units (OTUs), indicating very high diversity. Among them, 11 major taxa showed dominant OTUs with more than 5% in at least one sample, while Amphidinium testudo was the dominant taxon in the surface water in the low-salinity region affected by the CDW plume, and the chlorophyta was dominant in the SCM layer. In the warm water region affected by the TWC, various groups of haptophytes were dominant. Observations from the IORS also presented similar results to the cruise survey results for biomass, size distribution, and diversity of phytoplankton. The results revealed the various dynamic responses of phytoplankton influenced by the CDW plume. By comparing the results from the IORS and research cruise studies, the study confirmed that the IORS is an important observational station to monitor the dynamic impact of the CDW plume. In future research, it is necessary to establish an effective use of IORS in preparation for changes in the ECS summer environment and ecosystem due to climate change.

Influence of Fertilizer Type on Physiological Responses during Vegetative Growth in 'Seolhyang' Strawberry (생리적 반응이 다른 비료 종류가 '설향' 딸기의 영양생장에 미치는 영향)

  • Lee, Hee Su;Jang, Hyun Ho;Choi, Jong Myung;Kim, Dae Young
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • Objective of this research was to investigate the influence of compositions and concentrations of fertilizer solutions on the vegetative growth and nutrient uptake of 'Seolhyang' strawberry. To achieve this, the solutions of acid fertilizer (AF), neutral fertilizer (NF), and basic fertilizer (BF) were prepared at concentrations of 100 or $200mg{\cdot}L^{-1}$ based on N and applied during the 100 days after transplanting. The changes in chemical properties of the soil solution were analysed every two weeks, and crop growth measurements as well as tissue analyses for mineral contents were conducted 100 days after fertilization. The growth was the highest in the treatments with BF, followed by those with NF and AF. The heaviest fresh and dry weights among treatments were 151.3 and 37.8 g, respectively, with BF $200mg{\cdot}L^{-1}$. In terms of tissue nutrient contents, the highest N, P and Na contents, of 3.08, 0.54, and 0.10%, respectively, were observed in the treatment with NF $200mg{\cdot}L^{-1}$. The highest K content was 2.83%, in the treatment with AF $200mg{\cdot}L^{-1}$, while the highest Ca and Mg were 0.98 and 0.42%, respectively, in BF $100mg{\cdot}L^{-1}$. The AF treatments had higher tissue Fe, Mn, Zn, and Cu contents compared to those of NF or BF when fertilizer concentrations were controlled to equal. During the 100 days after fertilization, the highest and lowest pH in soil solution of root media among all treatments tested were 6.67 in BF $100mg{\cdot}L^{-1}$ and 4.69 in AF $200mg{\cdot}L^{-1}$, respectively. The highest and lowest ECs were $5.132dS{\cdot}m^{-1}$ in BF $200mg{\cdot}L^{-1}$ and $1.448dS{\cdot}m^{-1}$ in BF $100mg{\cdot}L^{-1}$, respectively. For the concentrations of macronutrients in the soil solution of root media, the AF $200mg{\cdot}L^{-1}$ treatment gave the highest $NH_4$ concentrations followed by NF $200mg{\cdot}L^{-1}$ and AF $100mg{\cdot}L^{-1}$. The K concentrations in all treatments rose gradually after day 42 in all treatments. When fertilizer concentrations were controlled to equal, the highest Ca and Mg concentrations were observed in AF followed by NF and BF until day 84 in fertilization. The BF treatments produced the highest $NO_3$ concentrations, followed by NF and AF. The trends in the change of $PO_4$ concentration were similar in all treatments. The $SO_4$ concentrations were higher in treatments with AF than those with NF or BF until day 70 in fertilization. These results indicate that compositions of fertilizer solution should to be modified to contain more alkali nutrients when 'Seolhyang' strawberry is cultivated through inert media and nutri-culture systems.

Transformation of Nitrogen Derived from Solid Piggery Manure in Soil under Aerobic or Anaerobic Incubation Condition (혐기(嫌氣) 및 호기조건하(好氣條件下)에서 토양처리(土壤處理)된 돈분(豚糞) 중(中) 질소형태변화(窒素形態變化))

  • Yun, Sun-Gang;Jung, Kwang-Yong;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.2
    • /
    • pp.121-126
    • /
    • 1993
  • The behaviors of inorganic nitrogen derived from solid animal waste in soil has been received too much concern partly because nitrate which occurred from nitrification can act as a pollutant to soil and groundwater and partly because the loss of nitrogen from surface soil by downward movement of water is disadvantageous in the view of plant nutrient. This present study was conducted to get fundamental imformations on nitrogen behavior and to provide improved basical concepts on the management of animal waste. Fresh or fermented pig manure was mixed with a sandy loam soil in the ratio of 2:1(soil:pig manure), packed into test tube and incubated at $30^+/-1^{\circ}C$ for 8 weeks under aerobic- or anaerobic condition. Sample tubes were taken at the one week interval and analyzed on pH, the amount of $CH_4$ produced under anaerobic condition and inorganic nitrogen. The pH of soil treated with fresh pig manure under anaerobic condition was lowered by 1.87 unit compared to that of under aerobic condition, but at the treatment with fermented pig manure, pH change was very little between aerobic and anaerobic condition. The coefficients of regressional equations which were obtained from pH and incubation time were -0.114 in fresh pig manure and -0.089 in fermented pig manure, and the extent of pH decrease due to incubation was greater in fresh pig manure than that of fermented pig waste. No differences in the amounts of $CH_4$ produced under anaerobic condition between fresh and fermented pig manure was observed until 3 weeks of incubation, however, after that the amount of $CH_4$ produced in fresh pig manure was abruptly increased and cumulative amont of $CH_4$ was reached 8.6 mole/g. K values on $CH_4$ production in fresh and fermented pig manure was 0.211 mole/g/day and 0.046 mole/g/day, respectively, for 5 weeks from the 3rd to the 8th week. $NH_4-N$ concentration at aerobic condition with fresh pig manure treatment was lowered by passing time of incubation, but $NO_3-N$ concentration was elevated from 11.2 ppm at initial state to 67.3 ppm after incubation and this trend on $NH_4-N$, $NO_3-N$ concentration was very similar to the treatment of fermented pig manure. While $NH_4-N$ concentration under anaerobic condition was greatly increased. $NO_3-N$ concentartion was not only very low but also no great changes, that was ranged from 4 to 8 ppm.

  • PDF

Effect of Liquid Pig Manure and Synthetic Fertilizer on Rice Growth, Yield, and Quality (벼 생육, 수량과 품질에 대한 돈분액비와 화학비료 시용 효과)

  • Kwon, Young-Rip;Kim, Ju;Ahn, Byung-Koo;Lee, Sang-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.54-60
    • /
    • 2010
  • We have researched the changes in nutrient content in each phase of fermentation in crops treated with liquefied pig fertilizer, and have determined the best method for applying livestock excrement to cultured crops. In the execution of this experiment, rice was cultivated to full maturity at a paddy field in Jeollabuk-Do Agriculture Research and Extension Services(Jeon-buk series) from 2007 to 2008. The rice plant nitrogen absorption quantity change, according to the growth stages of the cultivated rice, was 20.3% in the rice treated with the liquid pig manure and 22.2% the chemical fertilizer at highest congelation. The chemical fertilizer showed a higher absorption quantity than the liquid manure compost. The nitrogen density at highest congelation was 1.5% in the chemical fertilizer, and 1.8% in the pig manure liquid compost not a significant difference. The stem height at harvest time was 73.8 cm in the crops treated with the liquid pig manure compost. Those treated with the chemical fertilizer, yielded a height of 4.2 cm less than the crops treated with the liquid pig manure compost. The yield was 507 kg/10a in the liquid pig manure compost treated rice, compared with the chemical fertilizer, which showed a value of 1.2% lower. The protein content was 6.3% in the rice treated with the chemical fertilizer, but 6.4% in the rice treated with the liquid pig manure compost. This is not a significant difference. However, the lodging rice plant treated with the chemical fertilizer control showed a protein content of 6.8%, which was even higher than the normal rice. The head rice ratio in the brown rice and the polished rice ended up to be lower in the crop treated with the liquid pig manure than that treated with the chemical fertilizer, Quality, the palatability value, was similar in both groups. The above result indicate that, the effect of liquid pig manure compost corresponds to the effect of chemical fertilizer, when each are scattered uniformly.

Water Quality and Chlorophyll-a at the Birth Stage of a Large Reclaimed Estuarine Lake in Korea (Lake Hwaong) (간척하구호 (화옹호) 태동기의 수질과 엽록소-a 변화)

  • Kim, Ho-Sub;Chung, Mi-Hee;Choi, Chung-Il;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.455-462
    • /
    • 2003
  • This study evaluated the change of water quality and chlorophyll - a at the birth stage of a large reclaimed estuarine lake (Lake Hwaong) of which the dike was finally constructed in March, 2002. Physico -chemical parameters and chlorophyll - a were investigated along a longitudinal transect, including 3 in-lake sites and 1 out-lake site from June to November, 2002. Salinity at all in-lake sites was over 21 psu during the study period, indicating that lake is still in the seawater phase. Salinity was periodically diluted at times when precipitation was high, especially in August. Chemocline was established in July near the dam site, and correspondingly vertical profile of dissolved oxygen was very clear during that Period. Total nitrogen and phosphorus concentrations at all lake sites were in the eutrophic range, and they were especially high at the stream inlet site. Nutrients concentration was not much varied vertically but significantly varied temporally, and correlated significantly with precipitation and chlorophyll-a concentration, indicating that inflowing water from the watershed seemed not to improve lake water by dilution but cause eutrophication of the lake, and thereby stimulate phytoplankton development. Based on the analyses of nutrient ratio (N/P) and trophic state deviation, both phosphorus and nitrogen appeared to limit phytoplankton growth in the lake. Phosphorus limitation appeared to be probable at all in-lake sites with being most severe at the stream inlet site. Nitrogen limitation seemed to occur at both in-lake and out-lake sites. These results indicate that in Lake Hwaong experiencing the very early stage of a reclaiming lake, water quality and phytoplankton development appear to be affect-ed largely by salinity and hydrology and nutrients from the inflowing water. Lake biogeochemistry is still very unstable, and thus further long-term study is necessary to understand the effects of seawater to freshwater conversion on lake biology and water chemistry.