• Title/Summary/Keyword: numerical testing

Search Result 843, Processing Time 0.027 seconds

Numerical study of propagation, reflection, and scattering of ultrasonic waves (초음파의 전파, 반사, 산란 현상에 대한 수치 시뮬레이션)

  • 임현준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.401-406
    • /
    • 2002
  • A numerical model is introduced to simulate propagation, reflection, and scattering of elastic waves in solids. The model consists of mass points and linear springs, interconnected with in a lattice structure; hence, its name, the mass-spring lattice model (MSLM). The MSLM has successfully been applied to the numerical simulation and visualization of various elastic wave phenomena involved in ultrasonic nondestructive testing (NDT). This method is useful to simulate, design, or analyze actual testing. Some representative examples of numerical simulation using the MSLM are presented, and future work necessary for its further development Is addressed.

  • PDF

Analytical testing and evaluation of truss typed structures for tunnel maintenance

  • Lee, Dongkyu;Kim, Dohwan;Lee, Jaehong;Noh, Pilsung;Park, Sungsoo
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.949-961
    • /
    • 2015
  • The goal of this study is to present numerical modeling and analytical testing in order to evaluate an innovative space truss typed temporary structure, which is used to maintenance and repair of road tunnels. The present space truss structure has merits to use UL-700 high strength steel tube as members and to carry out maintenance and repair works of road tunnels without blocking cars and transportations. Numerical modeling and analytical testing of the space truss are investigated by using commercial engineering software, i.e., ABAQUS 6.5-1, and then it is verified that the truss structure has both structural safety and effective function for maintenances and repairs of road tunnels.

Numerical Evaluation of Phase Velocity and Attenuation of Ultrasonic Waves in Fiber-Reinforced Composites Using the Mass-Spring-Dashpot Lattice Model

  • Baek, Eun-Sol;Yim, Hyun-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.483-495
    • /
    • 2008
  • The paper presents a numerical study to evaluate the phase velocities and attenuations of the average longitudinal and shear ultrasonic waves resulting from multiple scattering in fiber-reinforced composites. A computational procedure developed in this work is first used to produce a random, yet largely even distribution of fibers. Both the viscoelastic epoxy matrix and lossless randomly distributed graphite fibers are modeled using the mass-spring-dashpot lattice model, with no damping for the latter. By numerically simulating ultrasonic through-transmission tests using this direct model of composites, phase velocities and attenuations of the longitudinal and shear waves through the composite are found as functions of frequency or fiber concentration. The numerical results are observed to generally agree with the corresponding results in the literature. Discrepancies found in some detail aspects, particularly in the attenuation results, are also addressed.

Use of the Mass-Spying Lattice Model for Simulation of Ultrasonic Waves in Austenitic Welds

  • Baek, Eun-Sol;Yim, Hyun-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.1
    • /
    • pp.30-39
    • /
    • 2006
  • Feasibility is studied for an application of the mass-spring lattice model (MSLM), a numerical model previously developed for unidirectional composites, to the numerical simulation of ultrasonic inspection of austenitic welds modeled as transversely isotropic. Fundamental wave processes, such as propagation, reflection, refraction, and diffraction of ultrasonic waves in such an inspection are simulated using the MSLM. All numerical results show excellent agreement with the analytical results. Further, a simplified model of austenitic weld inspection has been successfully simulated using the MSLM. In conclusion, a great potential of the MSLM in numerically simulating ultrasonic inspections of austenitic welds has been manifested in this work, though significant further efforts will be required to develop a model with field practicality.

Analysis of delay compensation in real-time dynamic hybrid testing with large integration time-step

  • Zhu, Fei;Wang, Jin-Ting;Jin, Feng;Gui, Yao;Zhou, Meng-Xia
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1269-1289
    • /
    • 2014
  • With the sub-stepping technique, the numerical analysis in real-time dynamic hybrid testing is split into the response analysis and signal generation tasks. Two target computers that operate in real-time may be assigned to implement these two tasks, respectively, for fully extending the simulation scale of the numerical substructure. In this case, the integration time-step of solving the dynamic response of the numerical substructure can be dozens of times bigger than the sampling time-step of the controller. The time delay between the real and desired feedback forces becomes more striking, which challenges the well-developed delay compensation methods in real-time dynamic hybrid testing. This paper focuses on displacement prediction and force correction for delay compensation in the real-time dynamic hybrid testing with a large integration time-step. A new displacement prediction scheme is proposed based on recently-developed explicit integration algorithms and compared with several commonly-used prediction procedures. The evaluation of its prediction accuracy is carried out theoretically, numerically and experimentally. Results indicate that the accuracy and effectiveness of the proposed prediction method are of significance.

Design and Numerical Analysis of Flexible Wing for Gust Response Alleviation (유연 날개 설계 및 돌풍응답완화 수치해석)

  • Lee, Sang-Wook;Kim, Tae-Uk;Kim, Sung-Chan;Hwang, In-Hee;Ha, Chul-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.203-206
    • /
    • 2006
  • In this study, the method of designing the flexible wing model which will be used for wind tunnel testing of gust response alleviation system was presented. The design concept proposed herein was validated by performing the modal testing of the flexible wing model manufactured for demonstration purpose. In addition, the study on the gust response alleviation using flexible wing control surface was performed. For this purpose, optimal control with output feedback was adopted for designing the control surface controller, and the effects of gust response alleviation was validated by performing the numerical simulation for the representative flexible wing model. The methods proposed and validated in this study can be applied for wind tunnel testing of the flexible wing for gust response alleviation.

  • PDF

Development and validation of a numerical model for steel roof cladding subject to static uplift loads

  • Lovisa, Amy C.;Wang, Vincent Z.;Henderson, David J.;Ginger, John D.
    • Wind and Structures
    • /
    • v.17 no.5
    • /
    • pp.495-513
    • /
    • 2013
  • Thin, high-strength steel roof cladding is widely used in residential and industrial low-rise buildings and is susceptible to failure during severe wind storms such as cyclones. Current cladding design is heavily reliant on experimental testing for the determination of roof cladding performance. Further study is necessary to evolve current design standards, and numerical modelling of roof cladding can provide an efficient and cost effective means of studying the response of cladding in great detail. This paper details the development of a numerical model that can simulate the static response of corrugated roof cladding. Finite element analysis (FEA) was utilised to determine the response of corrugated cladding subject to a static wind pressure, which included the anisotropic material properties and strain-hardening characteristics of the thin steel roof cladding. The model was then validated by comparing the numerical data with corresponding experimental test results. Based on this comparison, the model was found to successfully predict the fastener reaction, deflection and the characteristics in deformed shape of the cladding. The validated numerical model was then used to predict the response of the cladding subject to a design cyclone pressure trace, excluding fatigue effects, to demonstrate the potential of the model to investigate more complicated loading circumstances.

A real-time hybrid testing based on restart-loading technology for viscous damper

  • Guoshan Xu;Lichang Zheng;Bin Wu;Zhuangzhuang Ji;Zhen Wang;Ge Yang
    • Smart Structures and Systems
    • /
    • v.32 no.6
    • /
    • pp.349-358
    • /
    • 2023
  • Real-Time Hybrid Testing (RTHT) requires the numerical substructure calculations to be completed within the defined integration time interval due to its real-time loading demands. For solving the problem, A Real-Time Hybrid Testing based on Restart-Loading Technology (RTHT-RLT) is proposed in this paper. In the proposed method, in case of the numerical substructure calculations cannot be completed within the defined integration time interval, the experimental substructure was returned back to the initial state statically. When the newest loading commands were calculated by the numerical substructure, the experimental substructure was restarted loading from the initial state to the newest loading commands so as to precisely disclosing the dynamic performance of the experimental substructure. Firstly, the methodology of the RTHT-RLT is proposed. Furthermore, the numerical simulations and experimental tests on one frame structure with a viscous damper are conducted for evaluating the feasibility and effectiveness of the proposed RTHT-RLT. It is shown that the proposed RTHT-RLT innovatively renders the nonreal-time refined calculation of the numerical substructure feasible for the RTHT. The numerical and experimental results show that the proposed RTHT-RLT exhibits excellent performance in terms of stability and accuracy. The proposed RTHT-RLT may have broad application prospects for precisely investigating the dynamic behavior of large and complex engineering structures with specific experimental substructure where a restarting procedure does not affect the relevant hysteretic response.

Real-time Hybrid Testing a Building Structure Equipped with Full-scale MR dampers and Application of Semi-active Control Algorithms (대형 MR감쇠기가 설치된 건축구조물의 실시간 하이브리드 실험 및 준능동 알고리즘 적용)

  • Park, Eun-Churn;Lee, Sung-Kyung;Lee, Heon-Jae;Moon, Suk-Jun;Jung, Hyung-Jo;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.465-474
    • /
    • 2008
  • The real-time hybrid testing method(RT-HYTEM) is a structural testing technique in which the numerical integration of the equation of motion for a numerical substructure and the physical testing for an experimental substructure are performed simultaneously in real-time. This study presents the quantitative evaluation of the seismic performance of a building structure installed with an passive and semi-active MR damper by using RT-HYTEM. The building model that was identified from the force-vibration testing results of a real-scaled 5-story building is used as the numerical substructure, and an MR damper corresponding to an experimental substructure is physically tested by using the universal testing machine(UTM). The RT-HYTEM implemented in this study is validated because the real-time hybrid testing results obtained by application of sinusoidal and earthquake excitations and the corresponding analytical results obtained by using the Bouc-Wen model as the control force of the MR damper respect to input currents were in good agreement. Also for preliminary study, some semi-active control algorithms were applied to the MR damper in order to control the structural responses optimally. Comparing between the test results of semi-active control using RT-HYTEM and numerical analysis results show that the RT-HYTEM is more resonable than numerical analysis to evaluate the performance of semi-active control algorithms.

IE-SASW Method for Nondestructive Testing of Geotechnical Concrete Structure : I. Numerical Studies (콘크리트 지반구조물의 비파괴검사를 위한 충격반향-표면파병행기법 : I. 수치해석적 연구)

  • 김동수;서원석;이광명
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.257-270
    • /
    • 2002
  • The Impact-Echo(IE) method has been used to evaluate the integrity of concrete structures. In this method, the P-wave velocity of concrete is a crucial parameter in determining the thickness of concrete lining, the location of cracks or other defects. In many field applications of the IE method, the P-wave velocity is obtained by testing the core or the portion of a structure where the exact thickness is known. Occasionally, however, the core can not be obtained in specific structures and the P-wave velocity determined from core testing may not be a representative value of the structure. This study introduces an IE-SASW method that may determine the P-wave velocity on a surface of each testing area using the Spectral Analysis of Surface Wave (SASW) method. Results obtained from numerical studies are presented in this paper (Part I), and results obtained from experimental studies are presented in the companion paper (Part II). In this paper, numerical analyses using ABAQUS were carried out to investigate the effectiveness and the limitations of the IE-SASW method.