• 제목/요약/키워드: numerical techniques

검색결과 1,425건 처리시간 0.026초

Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories

  • Ezzat, M.A.;El-Bary, A.A.
    • Steel and Composite Structures
    • /
    • 제24권3호
    • /
    • pp.297-307
    • /
    • 2017
  • A unified mathematical model of phase-lag Green-Naghdi magneto-thermoelasticty theories based on fractional derivative heat transfer for perfectly conducting media in the presence of a constant magnetic field is given. The GN theories as well as the theories of coupled and of generalized magneto-thermoelasticity with thermal relaxation follow as limit cases. The resulting nondimensional coupled equations together with the Laplace transforms techniques are applied to a half space, which is assumed to be traction free and subjected to a thermal shock that is a function of time. The inverse transforms are obtained by using a numerical method based on Fourier expansion techniques. The predictions of the theory are discussed and compared with those for the generalized theory of magneto-thermoelasticity with one relaxation time. The effects of Alfven velocity and the fractional order parameter on copper-like material are discussed in different types of GN theories.

협착이 발생된 관상동맥내 시퀜셜 문합의 효과 (Sequential Bypass Effects in the Stenosed Coronary Artery)

  • 노형운;서상호;권혁문;이병권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1919-1922
    • /
    • 2003
  • Bypass anastomosis are frequently adopted for surgical treatments. After the bypass grafting, the bypass artery is often occluded due to restenosis and/or anastomotic neointimal fibrous hyperplasia phenomena. Optimal coronary bypass anastomosis should be investigated to improve the patency for the arterial bypass techniques. The objective of this study is to investigate the influence of bypass with sequential bypass effects in the stenosed coronary artery. Numerical analyses are focused on the understanding of the flow patterns for different sequential anastomosis techniques. Blood flow field is treated as two-dimensional incompressible laminar flow. The finite volume method is adopted for discretization of the governing equations. The Carreau model is employed as the constitutive equation for blood. To find the optimal sequential bypass anastomotic configurations, the mass flow rates at the outlet of different models are compared quantitatively.

  • PDF

AN A POSTERIORI ERROR ESTIMATE FOR MIXED FINITE ELEMENT APPROXIMATIONS OF THE NAVIER-STOKES EQUATIONS

  • Elakkad, Abdeslam;Elkhalfi, Ahmed;Guessous, Najib
    • 대한수학회지
    • /
    • 제48권3호
    • /
    • pp.529-550
    • /
    • 2011
  • In this work, a numerical solution of the incompressible Navier-Stokes equations is proposed. The method suggested is based on an algorithm of discretization by mixed finite elements with a posteriori error estimation of the computed solutions. In order to evaluate the performance of the method, the numerical results are compared with some previously published works or with others coming from commercial code like Adina system.

내연기관 밸브의 동적 접촉 및 응력 해석 (Analysis of Dynamic Contact and Stress of a Valve in Internal Combustion Engine)

  • 이기수;김동우;박상호;조성호;김방원
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.159-165
    • /
    • 2002
  • Numerical analysis of dynamic contact and stress developing in the high-speed driven valve of an internal combustion engine is presented. The valve is modeled by finite element techniques, and the dynamic contact between the valve and the valve seat is analyzed by the solution strategies of differential algebraic equations. Also an iterative scheme similar to the augmented Lagrange multiplier method is employed to enforce the contact constraints. It is shown that the contact and separation between the valve and the valve seat can be computed by the finite element techniques without assuming the artificial springs, and the efficiency and accuracy of the solution are demonstrated by the numerical examples.

최적화기법에 의한 베어링 동특성 계수의 규명 (Identification of Bearing Dynamic Coefficients Using Optimization Techniques)

  • 김용한;양보석;안영공;김영찬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.520-525
    • /
    • 2003
  • The determination of unknown parameters in rotating machinery is a difficult task and optimization techniques represent an alternative technique for parameter identification. The Simulated Annealing(SA) and Genetic Algorithm(GA) are powerful global optimization algorithm. This paper proposes new hybrid algorithm which combined GA with SA and local search algorithm for the purpose of parameter identification. Numerical examples are also presented to verify the efficiency of proposed algorithm. And, this paper presents the general methodology based on hybrid algorithm to identify unknown bearing parameters of flexible rotors using measured unbalance responses. Numerical examples are used to ilustrate the methodology used, which is then validated experimentally.

  • PDF

Internal resonance and nonlinear response of an axially moving beam: two numerical techniques

  • Ghayesh, Mergen H.;Amabili, Marco
    • Coupled systems mechanics
    • /
    • 제1권3호
    • /
    • pp.235-245
    • /
    • 2012
  • The nonlinear resonant response of an axially moving beam is investigated in this paper via two different numerical techniques: the pseudo-arclength continuation technique and direct time integration. In particular, the response is examined for the system in the neighborhood of a three-to-one internal resonance between the first two modes as well as for the case where it is not. The equation of motion is reduced into a set of nonlinear ordinary differential equation via the Galerkin technique. This set is solved using the pseudo-arclength continuation technique and the results are confirmed through use of direct time integration. Vibration characteristics of the system are presented in the form of frequency-response curves, time histories, phase-plane diagrams, and fast Fourier transforms (FFTs).

Current approaches of artificial intelligence in breakwaters - A review

  • Kundapura, Suman;Hegde, Arkal Vittal
    • Ocean Systems Engineering
    • /
    • 제7권2호
    • /
    • pp.75-87
    • /
    • 2017
  • A breakwater has always been an ideal option to prevent shoreline erosion due to wave action as well as to maintain the tranquility in the lagoon area. The effects of the impinging wave on the structure could be analyzed and evaluated by several physical and numerical methods. An alternate approach to the numerical methods in the prediction of performance of a breakwater is Artificial Intelligence (AI) tools. In the recent decade many researchers have implemented several Artificial Intelligence (AI) tools in the prediction of performance, stability number and scour of breakwaters. This paper is a comprehensive review which serves as a guide to the current state of the art knowledge in application of soft computing techniques in breakwaters. This study aims to provide a detailed review of different soft computing techniques used in the prediction of performance of different breakwaters considering various combinations of input and response variables.

The role of softening in the numerical analysis of R.C. framed structures

  • Bontempi, Franco;Malerba, Pier Giorgio
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.785-801
    • /
    • 1997
  • Reinforced Concrete beams with tension and compression softening material constitutive laws are studied. Energy-based and non-local regularisation techniques are presented and applied to a R.C. element. The element characteristics (sectional tangent stiffness matrix, element tangent stiffness matrix restoring forces) are directly derived from their symbolic expressions through numerical integration. In this way the same spatial grid allows us to obtain a non-local strain estimate and also to sample the contributions to the element stiffness matrix. Three examples show the spurious behaviors due to the strain localization and the stabilization effects given by the regularisation techniques, both in the case of tension and compression softening. The possibility to overestimate the ultimate load level when the non-local strain measure is applied to a non softening material is shown.

해석해를 이용한 단순볼록 다각형에서의 라프라스방정식의 해법 (A Solution Procedure Based on Analytical Solutions for Laplace's Equation on Convex Polygons)

  • 김윤영;윤민수
    • 대한기계학회논문집
    • /
    • 제17권11호
    • /
    • pp.2773-2781
    • /
    • 1993
  • Laplace's equation is, perhaps, the most important equation, which governs various kinds of physical phenomena. Due to its importance, there have been several numerical techniques such as the finite element method, the finite difference method, and the boundary element method. However, these techniques do not appear very effective as they require a substantial amount of numerical calculation. In this paper, we develop a new most efficient technique based on analytic solutions for Laplace's equation in some convex polygons. Although a similar approach was used for the same problem, the present technique is unique as it solves directly Laplace's equation with the utilization of analytical solutions.

Tracer Concentration Contours in Grain Lattice and Grain Boundary Diffusion

  • Kim, Yong-Soo;Donald R. Olander
    • Nuclear Engineering and Technology
    • /
    • 제29권1호
    • /
    • pp.7-14
    • /
    • 1997
  • Grain boundary diffusion plays a significant role in fission gas release, which is one of the crucial processes dominating nuclear fuel performance. Gaseous fission produce such as Xe and Kr generated during nuclear fission have to diffuse in the grain lattice and the boundary inside fuel pellets before they reach the open spaces in a fuel rod. These processes can be studied by 'tracer diffusion' techniques, by which grain boundary diffusivity can be estimated and directly used for low burn-up fission gas release analysis. However, only a few models accounting for the both processes are available and mostly handle them numerically due to mathematical complexity. Also the numerical solution has limitations in a practical use. In this paper, an approximate analytical solution in case of stationary grain boundary in a polycrystalline solid is developed for the tracer diffusion techniques. This closed-form solution is compared to available exact and numerical solutions and it turns out that it makes computation not only greatly easier but also more accurate than previous models. It can be applied to theoretical modelings for low bum-up fission gas release phenomena and experimental analyses as well, especially for PIE (post irradiation examination).

  • PDF