• 제목/요약/키워드: numerical radius

검색결과 616건 처리시간 0.024초

Influence of the empirical coefficients of cavitation model on predicting cavitating flow in the centrifugal pump

  • Liu, Hou-lin;Wang, Jian;Wang, Yong;Zhang, Hua;Huang, Haoqin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권1호
    • /
    • pp.119-131
    • /
    • 2014
  • The phenomenon of cavitation is an unsteady flow, which is nearly inevitable in pump. It would degrade the pump performance, produce vibration and noise and even damage the pump. Hence, to improve accuracy of the numerical prediction of the pump cavitation performance is much desirable. In the present work, a homogenous model, the Zwart-Gerber-Belamri cavitation model, is considered to investigate the influence of the empirical coefficients on predicting the pump cavitation performance, concerning a centrifugal pump. Three coefficients are analyzed, namely the nucleation site radius, evaporation and condensation coefficients. Also, the experiments are carried out to validate the numerical simulations. The results indicate that, to get a precise prediction, the approaches of declining the initial bubble radius, the condensation coefficient or increasing the evaporation coefficient are all feasible, especially for declining the condensation coefficient, which is the most effective way.

기계평면시일의 마찰열 변형거동에 관한 수치적 연구 (Numerical Study of Thermal Deformations Due to Frictional Heatings in a Mechanical Face Seal)

  • 김청균;함정윤
    • Tribology and Lubricants
    • /
    • 제14권2호
    • /
    • pp.49-56
    • /
    • 1998
  • The thermal deformation of the contact seal components has been analyzed using the finite element method. The temperature distributions, the thermal deformations and contact stresses are solved numerically for the contact surface with wear coning effects. The thermal deformation is always shown to distort the sealing surface along the radius of the seal ring. The results show that the deformations of inner radius side are significant compared with those of outer radius. Thus, the thermal deformation due to thermal heatings may promote the coned face wear or wear related thermal cracks at the contacting face of the seal ring component.

A Numerical Study on Methane-Air Counterflow Diffusion Flames Part 2. Global Strain Rate

  • Park, Woe Chul
    • International Journal of Safety
    • /
    • 제2권1호
    • /
    • pp.12-16
    • /
    • 2003
  • In Part 1, the flame structure of the counterflow nonpremixed flames computed by using Fire Dynamics Simulator was compared with that of OPPDIF for different concentrations of methane in the fuel stream. In this study, comparisons were made for the global strain rate that is an important parameter for diffusion flames for further evaluation of FDS. At each of the three fuel concentrations, $20% CH_4+ 80% N_2, 50% CH_4 + 50% N_2, 90% CH_4 + 10% N_2$ in the fuel stream, the temperature and axial velocity profiles were investigated for the global strain rate in the range from 20 to $100s^{-1}$. Changes in flame thickness and radius were also compared with OPPDIF. There was good agreement in the temperature and axial velocity profiles between the axisymmetric simulations and the one-dimensional computations except for the regions where the flame temperature reach its peak and the axial velocity rapidly changes. The simulations of the axisymmetric flames with FDS showed that the flame thickness decreases and the flame radius increases with increasing global strain rate.

미분탄의 집단점화 해석 (Analysis of Group Ignition of Pulverized Coal Particles)

  • 서경근;김호영
    • 한국연소학회지
    • /
    • 제4권2호
    • /
    • pp.1-10
    • /
    • 1999
  • Pulverized coal is widely used as the source of electrical power generation and industrial processes. Numerical analysis on the transient ignition process of the cloud of pulverized coal particles in various cases is carried out. Particle radius, initial particle temperature, number density are chosen as major parameters that influence the characteristics of ignition and combustion. The result can be summarized as follow. The ignition occurs at the position that is closed to the surface of the cloud. Maximum temperature and velocity appear at ignition point, and the concentrations of gaseous fuel and oxidizer decrease rapidly near the ignition point. The chemical reaction takes place in wider zone as number density and particle radius decrease. The ignition delay is shortest when particle radius is about $50\;{\mu}m$, and tends to be shorter as number density and initial ambient temperature increase.

  • PDF

기계평면시일의 마찰열 변형거동에 관한 수치적 연구 (Numerical Study of Thermal Deformations Due to Frictional Heatings in a Mechanical Face Seal)

  • 함정윤;김청균
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제27회 춘계학술대회
    • /
    • pp.149-158
    • /
    • 1998
  • The thermal deformation of the contact seal components has been analyzed using the finite element method. The temperature distributions, the thermal deformations and contact stresses are solved numerically for the contact surface with wear coning effects. The thermal deformation is always shown to distort the sealing surface along the radius of the seal ring. The results show that the deformations of inner radius side are significant compared with those of outer radius. Thus, the thermal deformation due to thermal heatings may promote the coned face wear or wear related thermal cracks at the contacting face of the seal ring component.

  • PDF

회전하는 보의 유한요소해석을 위한 유리형상함수의 확장 (Extension of Rational Interpolation Functions for FE Analysis of Rotating Beams)

  • 김용우;정재호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.573-578
    • /
    • 2009
  • Starting from the rotating beam finite element in which the interpolating shape functions satisfies the governing static homogeneous differential equation of Euler-Bernoulli rotating beams, we derived new shape functions that satisfies the governing differential equation which contains the terms of hub radius and setting angle. The shape functions are rational functions which depend on hub radius, setting angle, rotational speed and element position. Numerical results for uniform and tapered cantilever beams with and without hub radius and setting angle are compared with the available results. It is shown that the present element offers an accurate method for solving the free vibration problems of rotating beam.

  • PDF

연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석 (Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect)

  • 임하성;권성훈;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제16권9호
    • /
    • pp.912-918
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

만에 적용되는 천수방정식의 개방경계조건

  • 윤태훈;서승원
    • 물과 미래
    • /
    • 제20권3호
    • /
    • pp.219-228
    • /
    • 1987
  • 만내 및 입구부에 대한 흐름해석으로 천수방정식이 이용되었으며, 개방경계의 위치를 변화시키며 해석하였다. 만입구로부터의 거리를 변화시키며 설정된 반도형태의 개방경계에 대한 수치해석결과 적절한 개방경계의 위치는 만입구의 폭을 2B라 했을 때 이에 대한 관계로 표현할 수 있고 3B 이상인 경우에서 해는 안정한 상태로 되어 최적의 개방경계위치는 3B가 적절할 것으로 판단되었다. 천수방정식에 대한 수치기법으로는 전형적인 Galerkin 방법에 의한 유한요소법이 적용되었다.

  • PDF

연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석 (Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect)

  • 임하성;권성훈;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1354-1359
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

  • PDF

회전하는 보의 유한요소해석을 위한 유리형상함수의 확장 (Extension of Rational Interpolation Functions for FE Analysis of Rotating Beams)

  • 김용우;정재호
    • 한국소음진동공학회논문집
    • /
    • 제19권6호
    • /
    • pp.591-598
    • /
    • 2009
  • Starting from the rotating beam finite element in which the interpolating shape functions satisfy the governing static homogeneous differential equation of Euler-Bernoulli rotating beams, we derived new shape functions that satisfy the governing differential equation which contains the terms of hub radius and setting angle. The shape functions are rational functions which depend on hub radius, setting angle, rotational speed and element position. Numerical results for uniform and tapered cantilever beams with and without hub radius and setting angle are compared with the available results. It is shown that the present element offers an accurate method for solving the free vibration problems of rotating beams.