• 제목/요약/키워드: numerical oscillations

검색결과 209건 처리시간 0.029초

조합공진 영역에서 감쇠의 영향을 고려한 비선형 진동 응답 특성 (Nonlinear Oscillation Characteristics in Combination Resonance Region Considering Damping Effects)

  • 정태건
    • 한국소음진동공학회논문집
    • /
    • 제20권9호
    • /
    • pp.849-855
    • /
    • 2010
  • Damping may change the response characteristics of nonlinear oscillations due to the parametric excitation of a thin cantilever beam. When the natural frequencies of the first bending and torsional modes are of the same order of magnitude, we can observe the one-to-one combination resonance in the perturbation analysis depending on the characteristic parameters. The nonlinear behavior about the combination resonance reveals a chaotic motion depending on the natural frequencies and damping ratio. We can analyze the chaotic dynamics by using the eigenvalue analysis of the perturbed components. In this paper, we derived the equations for autonomous system and solved them to obtain the characteristic equation. The stability analysis was carried out by examining the eigenvalues. Numerical integration gave the physical behavior of each mode for given parameters.

Numerical Methods for Wave Response in Harbor

  • Kim, D.J.;Bai, K.J.
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • 제1권1호
    • /
    • pp.4-14
    • /
    • 1993
  • A natural and an artificial harbor can exhibit frequency (or period) dependent water surface oscillations when excited by incident waves. Such oscillations in harbors can cause significant damages to moored ships and adjacent structures. This can also induce undesirable current in harbor. Many previous investigators have studied various aspects of harbor resonance problem. In the present paper, both a localized finite element method(LFEM) which is based on the functional constructed by Chen & Mei(1974) and Bai & Yeung(1974) and an integral equation method which was used by Lee(1969) are applied to harbor resonance problem. The LFEM shows computationally more efficient than the integral equation method. Our test results show a good agreement compared with other results. In the present computations, specifically two harbor geometris are treated here. The present method by LFEM can be extended to a fully three dimensional harbor problem.

  • PDF

철도안전법 시행지침 16조의 충격가속도 평가를 위한 객차의 데이터 필터링 연구 (Study on the Collision Acceleration Data Filtering of the Passenger Trailer for the Article 16 of the Rolling Stock Crashworthiness Regulations)

  • 조현직;김운곤;구정서;송달호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.820-825
    • /
    • 2008
  • In the article 16 of the domestic rolling stock crashworthiness regulations, the collision acceleration level during collision accidents should remain under the maximum 7.5g and the average 5g. By the way, the accelerations obtained in crash simulations and tests contain many kinds of high frequency components due to numerical oscillations or noisy signals. So, this paper aims to develop reliable post-processing methods to filter high frequency oscillations and extract the rigid body motions of passenger rail cars. For this study we used the 1-dimensional dynamic model of KHST (Korean high-speed train), and evaluated acceleration data at the driver's area in the first power car and the passenger area in the following trailer.

  • PDF

액체금속로 내부 열유동해석을 위한 대류항처리법 평가 (Evaluation of Convection Schemes for Thermal Hydraulic Analysis in a Liquid Metal Reactor)

  • 최석기;김성오;김의광;어재혁;최훈기
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 추계 학술대회논문집
    • /
    • pp.64-69
    • /
    • 2002
  • A numerical study has been peformed for evaluation of convection schemes for thermal hydraulic analysis in a liquid metal reactor Four convection schemes, HYBRID, QUICK, SMART and HLPA included in the CFX-4 code are considered. The performances of convection schemes are evaluated by applying them to the five test problems. The accuracy, stability and convergence are tested. It is shown that the HYBRID scheme is too diffusive, and the QUICK scheme exhibits overshoots and undershoots, and the SMART scheme shows convergence oscillations, and the HLPA scheme preserves the boundedness without causing convergence oscillations. The accuracies of SMART, QUICK and HLPA schemes are comparable. Thus, the use of HLPA scheme is highly recommended for thermal hydraulic analysis in a liquid metal reactor.

  • PDF

REACTIVITY OSCILLATION IN SOURCE-DRIVEN SYSTEMS

  • Dulla, S.;Nicolino, C.;Ravetto, P.
    • Nuclear Engineering and Technology
    • /
    • 제38권7호
    • /
    • pp.657-664
    • /
    • 2006
  • The problem of reactivity oscillations for a point reactor constitutes an interesting aspect of nuclear reactor physics and its solution may give important information for dynamic and safety assessments. The present paper considers the problem of a reactivity oscillation for a source-driven system which involves some specific aspects that introduce significant differences with respect to the source-free situation. Assuming a square-wave shape for the reactivity insertion, the solution is derived by a fully analytical approach. The conditions for stability and instability can be identified in a straightforward way by directly studying the stationarity of the power response. Numerical results presented allow to discuss the role of the system kinetic parameters and of the time-shape of the reactivity wave.

Stabilization effect of fission source in coupled Monte Carlo simulations

  • Olsen, Borge;Dufek, Jan
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.1095-1099
    • /
    • 2017
  • A fission source can act as a stabilization element in coupled Monte Carlo simulations. We have observed this while studying numerical instabilities in nonlinear steady-state simulations performed by a Monte Carlo criticality solver that is coupled to a xenon feedback solver via fixed-point iteration. While fixed-point iteration is known to be numerically unstable for some problems, resulting in large spatial oscillations of the neutron flux distribution, we show that it is possible to stabilize it by reducing the number of Monte Carlo criticality cycles simulated within each iteration step. While global convergence is ensured, development of any possible numerical instability is prevented by not allowing the fission source to converge fully within a single iteration step, which is achieved by setting a small number of criticality cycles per iteration step. Moreover, under these conditions, the fission source may converge even faster than in criticality calculations with no feedback, as we demonstrate in our numerical test simulations.

하이브리드 로켓의 저주파불안정성에 미치는 당량비 영향 직접수치해석 (Direct Numerical Simulation of Low Frequency Instability in a Hybrid Rocket with Equivalence Ratio Effects)

  • 최효상;이창진;강상훈
    • 한국추진공학회지
    • /
    • 제23권2호
    • /
    • pp.60-67
    • /
    • 2019
  • 하이브리드로켓의 저주파수 연소불안정(LFI) 특성을 이해하기 위해, 주연소실의 연소 당량비 변화가 500 Hz대역의 압력 및 열방출 진동의 위상변화에 미치는 영향에 대해 직접수치해석을 수행하였다. 주연소실의 당량비 변화는 후연소실로 유입되는 연소가스의 온도 및 조성 변화로 모사하였다. 수치해석 결과, 후향 계단 하류에 와류 생성과 함께 추가적인 연소가 나타나며, 와류가 이동함에 따라 연소 압력 및 반응률의 진동이 관찰되었다. 또한, 유입유동의 온도가 변화하면 압력파의 전파속도도 함께 변화하므로 압력 및 반응률 진동 사이의 위상차가 천이하게 됨을 확인하였다.

A Numerical and Experimental Study on Dynamics of A Towed Low-Tension Cable

  • 정동호;박한일
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.191-196
    • /
    • 2002
  • The paper presents a numerical and experimental investigation on dynamic behaviors of a towed low tension cable. In the numerical study, an implicit finite difference algorithm is employed for three-dimensional cable equations. Fluid and geometric non-linearity and bending stiffness are considered and solved by Newton-Raphson iteration. Block tri-diagonal matrix method is applied for the fast calculation of the huge size of matrices. In order to verify the numerical results and to see real physical phenomena, an experiment is carried out for a 6m cable in a deep and long towing tank. The cable is towed in two different ways; one is towed at a constant speed and the other is towed at a constant speed with top end horizontal oscillations. Cable tension and shear forces are measured at the top end. Numerical and experimental results are compared with good agreements in most cases but with some differences in a few cases. The differences are due to drag coefficients caused by vortex shedding. In the numerical modeling, non-uniform element length needs to be employed to cope with the sharp variation of tension and shear forces at near top end.

  • PDF

원통 내 스핀업 유동에서의 관성진동에 관한 수치해석적 연구 (Numerical Study on Inertial Oscillations in the Spin-up of Fluid in a Circular Cylinder)

  • 서용권
    • 한국해양공학회지
    • /
    • 제15권3호
    • /
    • pp.9-19
    • /
    • 2001
  • In this paper we present the aspect of inertial oscillation typically observed in the spin-up of fluids at low Rossby numbers in a circular cylinder. Numerical computations for the quasi three-dimensional equation as well as one-dimensional equation are performed to estimate the predictability of the one-dimensional equation with Ekman pumping/suction models. It is assumed that the discrepancy between the two results may be attributed to the inertial oscillation The detailed analysis to the numerical results reveals that the axial plane is dominated by a comparatively strong oscillatory flows caused by the inertial oscillation. In view of the fact that the time-averaged flow field however agrees to the Taylor-Proudman theorem, it is recommended that further analysis is needed to obtain an improved one-dimensional model like the Reynolds-averaged Navier-Stokes equation for turbulent flows.

  • PDF

Finite difference TVD scheme for modeling two-dimensional advection-dispersion

  • Guan, Y.;Zhang, D.
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.22-27
    • /
    • 2006
  • This paper describes the development of the stream-tube based dispersion model for modeling contaminant transport in open channels. The operator-splitting technique is employed to separate the 2D contaminant transport equation into the pure advection and pure dispersion equations. Then the total variation diminishing (TVD) schemes are combined with the second-order Lax-Wendroff and third-order QUICKEST explicit finite difference schemes respectively to solve the pure advection equation in order to prevent the occurrence of numerical oscillations. Due to various limiters owning different features, the numerical tests for 1D pure advection and 2D dispersion are conducted to evaluate the performance of different TVD schemes firstly, then the TVD schemes are applied to experimental data for simulating the 2D mixing in a straight trapezoidal channel to test the model capability. Both the numerical tests and model application show that the TVD schemes are very competent for solving the advection-dominated transport problems.

  • PDF