• Title/Summary/Keyword: numerical noise

Search Result 2,198, Processing Time 0.027 seconds

Numerical Study on the Control of Heavy-weight Floor Impact Noise for PC Slab Coupled with Viscoelastic Material (점탄성재료가 결합된 PC 슬래브의 중량충격음 저감에 관한 수치해석 연구)

  • Hwang, Jae-Seung;Song, Jin-Kyu;Hong, Geon-Ho;Park, Hong-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.5
    • /
    • pp.533-540
    • /
    • 2008
  • In this study, a new slab system where a part of precast slab is connected each other by viscoelastic material is proposed and numerical analysis is performed to evaluate the effect of the connection between the material and PC slab on the vibration and noise control. Substructuring is introduced to develop the equation of motion for the slab system. In addition, the optimal properties of viscoelastic material are investigated. For the performance evaluation of the new slab system, the sound power and acceleration responses of the slab are compared with those of two way slab and one way slab, respectively. Numerical analysis results show that the sound power of the new slab system can be reduced by viscoelastic material significantly.

Vibration and Noise Control of the Simply Supported Slab Using the Multi-tuned Mass Damper (다중동조질량감쇠기를 이용한 단순지지 슬래브의 진동 및 소음저감에 관한 연구)

  • Hwang, Jae-Seung;Hong, Geon-Ho;Park, Hong-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1006-1013
    • /
    • 2008
  • In this study, it is outlined that heavy weight floor impact noise induced by the vibration of slab can be reduced using multi tuned mass damper(MTMD) effectively. Substructure synthesis is utilized to develope analytical model of the slab coupled with MTMD and acoustic power is introduced to evaluate the performance of noise control for simplicity. Numerical analysis is carried out to investigate the effect of the properties of MTMD on the vibration and noise control of the simply supported slab. Numerical analysis shows that mass ratio of MTMD is critical on the vibration and noise control of the slab and it is also essential to reduce the vibration in higher modes of slab in the light of its great effect on the radiation of sound.

Vibration and noise control of slab using the multi-tuned mass damper (다중질량감쇠기를 이용한 슬래브의 진동 및 소음저감에 관한 연구)

  • Hwang, Jae-Seung;Kim, Hong-Jin;Kang, Kyung-Soo;Hong, Gun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.659-664
    • /
    • 2008
  • In this study, it is outlined that heavy weight floor impact noise induced by the vibration of slab can be reduced by multi tuned mass damper(MTMD) effectively. Substructure synthesis is utilized to develope analytical model of slab coupled with MTMD and acoustic power is introduced to evaluate the performance of noise control for simplicity. Numerical analysis is carried out to investigate the effect of the properties of MTMD on the vibration and noise control. Numerical analysis shows that mass ratio of MTMD is critical on the vibration and noise control of the slab and it is essential to reduce the vibration in higher modes of slab because it has a great effect on the radiation of sound.

  • PDF

Numerical Prediction of Aerodynamic Noise from Rotors (회전익 공력소음의 수치적 예측)

  • 이정한;이수갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.581-587
    • /
    • 1997
  • Numerical predictions of aerodynamic noise radiated by subsonic rotors are carried out. A time domain approach for Ffowcs-Williams Hawkings equation of acoustic analogy is used in developing a comprehensive rotor/fan noise prediction program to handle both arbitrary blade shapes and loading conditions. Since only the aeroacoustic aspects of rotors are considered here, the calculations are carried out for rotors with simple aerodynamic characteristics. Broadband noise from ingestion of turbulence is also considered. By incorporating discrete frequency noise prediction of steady loading with broadband spectrum, much better correlation at the low frequency region with experimental data is obtaind. The contributions from different noise mechanisms can also be analysed through this method.

  • PDF

A Study on the Structural-acoustic Analysis Modeling Methods of the Room with Heavy Impact Noise Source (중량충격원 충격에 따른 공동주택 실내공간의 구조음장 해석 모델링방법에 관한 연구)

  • Lee, Jae-Kwang;Koo, Hae-Shik
    • KIEAE Journal
    • /
    • v.9 no.6
    • /
    • pp.81-87
    • /
    • 2009
  • The purpose of the present study is to establish structural noise analyzing method for apartments building floor with structural-acoustic coupling analysis modeling. Noise through floor in the room is recognized as a significant problem with the consequence that noise isolation technique has been studied in the various fields of industry. From among noise factors, resonance sound is the main reason for solid noise of the floor, which is occurred by mechanical vibrations of the acoustic boundary line and the change of velocity. To analyse this phenomenon, numerical computation methods are provided in many fields, In this study, evaluation method for slab is established using finite element method, and a case study for analyzing acoustic phenomenon was suggested. The results show that numerical method, especially F.E.M, has a good approximation to predict noise at floors.

Analysis of Applicability of Active Noise Control (ANC) technique for Reducing Inter-Floor Noise in Apartment Buildings (공동주택 층간소음 저감을 위한 능동소음제어(ANC) 기술 적용가능성 분석)

  • Nam, Jin-Won;Kim, Ho-Jin;Kim, Jun-Hwan;Wee, Hyuk;Kim, Joong-Kwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.49-56
    • /
    • 2022
  • In this study, numerical simulations for reducing noise between floors in an apartment building was carried out using Active Noise Control (ANC) technology. In order to examine the feasibility of using ANC to reduce noise between floors, accelerometers and microphones for noise collection were installed in the inter-floor noise test facility to measure noise and vibration caused by the impact ball drop test. By using the measured data, Filtered-x Least Mean Square (Fx-LMS) algorithm-based ANC simulations were carried out. In the simulations, after deriving optimal simulation conditions including the adaptive control convergence coefficient, the noise reduction effect was analyzed through numerical simulations using the number of installed accelerometers and speakers as variables. Finally, it was confirmed that the noise between floors could be reduced using ANC technology under limited conditions.

Broadband Noise Analysis of Horizontal Axis Wind Turbines Including Low Frequency Noise (수평축 풍력발전기의 저주파소음을 포함한 광대역소음 해석에 관한 연구)

  • Him, Hyun-Jung;Kim, Ho-Geun;Lee, Soo-Gab
    • New & Renewable Energy
    • /
    • v.3 no.3
    • /
    • pp.45-53
    • /
    • 2007
  • This paper demonstrates a computational method in predicting aerodynamic noise generated from wind turbines. Low frequency noise due to displacement of fluid and leading fluctuation, according to the blade passing motion, is modelled on monopole and dipole sources. They are predicted by Farassat 1A equation. Airfoil self noise and turbulence ingestion noise are modelled upon quadrupole sources and are predicted by semi-empirical formulas composed on the groundwork of Brooks et al. and Lowson. Aerodynamic flow in the vicinity of the blade should be obtained first, while noise source modelling need them as numerical inputs. Vortex Lattice Method(VLM) is used to compute aerodynamic conditions near blade. In the use of program X-foil [M.Drela] boundary layer characteristics are calculated to obtain airfoil self noise. Wind turbine blades are divided into spanwise unit panels, and each panel is considered as an independent source. Retarded time is considered, not only in low frequency noise but also In turbulence ingestion noise and airfoil self noise prediction. Numerical modelling is validated with measurement from NREL [AOC15/50 Turbine) and ETSU [Markham's VS45] wind turbine noise measurements.

  • PDF

DFSS OPTIMUM DESIGN OF LOW NOISE COOLING FAN FOR AN ALTERNATOR BY NUMERICAL METHOD (수치기법을 이용한 저소음 얼터네이터 냉각팬의 DFSS 최적 설계)

  • Kim, W.;Jeon, W.H.;Hyun, J.J.;Lim, C.K.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.233-238
    • /
    • 2008
  • An alternator which converts mechanical rotating energy into electric energy is an important component of a vehicle. It operates in broad range from 3000 RPM to 18000 RPM. So, sufficient flow rate and low noise are needed in such broad operating range for a cooling fan of this alternator. In current study, the cooling fan of an alternator is developed through DFSS process and numerical analysis. In order to calculate flow rate and noise level, SC/Tetra and Flow Noise are used respectively, for a new developed fan, compared with original model, numerical result shows 3 dBA reduction and measured value shows 4 dBA reduction.

  • PDF

DFSS OPTIMUM DESIGN OF LOW NOISE COOLING FAN FOR AN ALTERNATOR BY NUMERICAL METHOD (수치기법을 이용한 저소음 얼터네이터 냉각팬의 DFSS 최적 설계)

  • Kim, W.;Jeon, W.H.;Hyun, J.J.;Lim, C.K.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.233-238
    • /
    • 2008
  • An alternator which converts mechanical rotating energy into electric energy is an important component of a vehicle. It operates in broad range from 3000 RPM to 18000 RPM. So, sufficient flow rate and low noise are needed in such broad operating range for a cooling fan of this alternator. In current study, the cooling fan of an alternator is developed through DFSS process and numerical analysis. In order to calculate flow rate and noise level, SC/Tetra and Flow Noise are used respectively, for a new developed fan, compared with original model, numerical result shows 3 dBA reduction and measured value shows 4 dBA reduction.

  • PDF

A Numerical Study on Radiation of Duct Internal Noise (항공기 엔진 소음 전파에 대한 수치적 연구)

  • Cheong, Cheol-Ung;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.98-103
    • /
    • 2000
  • The cut-off is a unique feature associated with duct acoustics due to the presence of duct walls. Duct geometry effect on sound radiation is another issue of duct acoustics. The radiation of duct internal noise to ambient from duct open ends with various geometries is studied via numerical methods. The linearized Euler's equations in generalized curvilinear coordinates are solved by the DRP finite difference scheme. A number of accurate boundary conditions are used at boundaries for the computational domain to minimize the non-physical reflections. The far field sound pressure levels are computed by the Kirchhoff integration method. We investigate the cut off phenomana and duct geometry effects on sound radiation with numerical results.

  • PDF