• Title/Summary/Keyword: numerical modelling

Search Result 908, Processing Time 0.031 seconds

Numerical modelling of circular reinforced concrete columns confined with GFRP spirals using fracture-plastic model

  • Muhammad Saad Ifrahim;Abdul Jabbar Sangi;Shuaib H. Ahmad
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.527-536
    • /
    • 2023
  • Fiber Reinforced Polymer (FRP) bar has emerged as a viable and sustainable replacement to steel in reinforced concrete (RC) under severe corrosive environment. The behavior of concrete columns reinforced with FRP bars, spirals, and hoops is an ongoing area of research. In this study, 3D nonlinear numerical modelling of circular concrete columns reinforced with Glass Fiber Reinforced Polymer (GFRP) bars and transversely confined with GFRP spirals were conducted using fracture-plastic model. The numerical models and experimental results are found to be in good agreement. The effectiveness of confinement was accessed through von-mises stresses, and it was found that the stresses in the concrete's core are higher with a 30 mm pitch (46 MPa) compared to a 60 mm pitch (36 MPa). The validated models are used to conduct parametric studies. In terms of axial load carrying capacity and member ductility, the effect of concrete strength, spiral pitch, and longitudinal reinforcement ratio are thoroughly investigated. The confinement effect and member ductility of a GFRP RC column increases as the spiral pitch decreases. It is also found that the confinement effect and member ductility decreased with increase in strength of concrete.

Modelling of tension-stiffening in bending RC elements based on equivalent stiffness of the rebar

  • Torres, Lluis;Barris, Cristina;Kaklauskas, Gintaris;Gribniak, Viktor
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.997-1016
    • /
    • 2015
  • The contribution of tensioned concrete between cracks (tension-stiffening) cannot be ignored when analysing deformation of reinforced concrete elements. The tension-stiffening effect is crucial when it comes to adequately estimating the load-deformation response of steel reinforced concrete and the more recently appeared fibre reinforced polymer (FRP) reinforced concrete. This paper presents a unified methodology for numerical modelling of the tension-stiffening effect in steel as well as FRP reinforced flexural members using the concept of equivalent deformation modulus and the smeared crack approach to obtain a modified stress-strain relation of the reinforcement. A closed-form solution for the equivalent secant modulus of deformation of the tensioned reinforcement is proposed for rectangular sections taking the Eurocode 2 curvature prediction technique as the reference. Using equations based on general principles of structural mechanics, the main influencing parameters are obtained. It is found that the ratio between the equivalent stiffness and the initial stiffness basically depends on the product of the modular ratio and reinforcement ratio ($n{\rho}$), the effective-to-total depth ratio (d/h), and the level of loading. The proposed methodology is adequate for numerical modelling of tension-stiffening for different FRP and steel reinforcement, under both service and ultimate conditions. Comparison of the predicted and experimental data obtained by the authors indicates that the proposed methodology is capable to adequately model the tension-stiffening effect in beams reinforced with FRP or steel bars within wide range of loading.

FEM-based modelling of stabilized fibrous peat by end-bearing cement deep mixing columns

  • Dehghanbanadaki, Ali;Motamedi, Shervin;Ahmad, Kamarudin
    • Geomechanics and Engineering
    • /
    • v.20 no.1
    • /
    • pp.75-86
    • /
    • 2020
  • This study aims to simulate the stabilization process of fibrous peat samples using end-bearing Cement Deep Mixing (CDM) columns by three area improvement ratios of 13.1% (TS-2), 19.6% (TS-3) and 26.2% (TS-3). It also focuses on the determination of approximate stress distribution between CDM columns and untreated fibrous peat soil. First, fibrous peat samples were mechanically stabilized using CDM columns of different area improvement ratio. Further, the ultimate bearing capacity of a rectangular foundation rested on the stabilized peat was calculated in stress-controlled condition. Then, this process was simulated via a FEM-based model using Plaxis 3-D foundation and the numerical modelling results were compared with experimental findings. In the numerical modelling stage, the behaviour of fibrous peat was simulated based on hardening soil (HS) model and Mohr-Coulomb (MC) model, while embedded pile element was utilized for CDM columns. The results indicated that in case of untreated peat HS model could predict the behaviour of fibrous peat better than MC model. The comparison between experimental and numerical investigations showed that the stress distribution between soil (S) and CDM columns (C) were 81%C-19%S (TS-2), 83%C-17%S (TS-3) and 89%C-11%S (TS-4), respectively. This implies that when the area improvement ratio is increased, the share of the CDM columns from final load was increased. Finally, the calculated bearing capacity factors were compared with results on the account of empirical design methods.

Nonlinear Finite Element Analysis on Global and Distortional Buckling of Cold-Formed Steel Members (냉간성형강재의 전체좌굴 및 뒤틀림좌굴에 대한 비선형유한요소해석)

  • Kang, Hyun Koo;Rha, Chang Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.79-86
    • /
    • 2014
  • This paper presents modelling approaches for the global and distortional buckling of cold-formed built-up steel sections using the finite element software packages, ANSYS and ABAQUS. Thin thickness of the cold-formed steel causes nonlinear behaviour due to local and distortional buckling, thus careful consideration is required in modelling for numerical analysis. Implicit static modelling using ANSYS provides unstable numerical results as the load approaches the limit point but explicit dyamic modelling with ABAQUS is able to display the behaviour even in post-buckling range. Meanwhile, axial load capacities obtained from the numerical analysis show higher values than the experimental axial capacities, due to eccentricity during the test. Axial capacities of the cold-formed steel obtained through numerical analysis requires reduction factor, and this paper suggests 0.88 for the factor.

A Numerical Modelling for the Prediction of Phase Transition Time(Ice-Water) in Frozen Gelatin Matrix by Ohmic Thawing Process

  • Kim, Jee-Yeon;Park, Sung-Hee;Min, Sang-Gi
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2004.10a
    • /
    • pp.407-411
    • /
    • 2004
  • Ohmic heating occurs when an electric current is passes through food, resulting in a temperature rise in the product due to the conversion of the electric energy into heat. The time spent in the thawing is critical for product sterility and quality. The objective of this study is to conduct numerical modelling between the effect of ohmic thawing intensity on PTT(phase transition time) at constant concentration and the effect of matrix concentrations on PTT at constant voltage condition. the stronger ohmic thawing intensity resulted in decreasing the PTT. High ohmic intensity causes short PTT. And the higher gelatin concentration, the faster increment of PTT. A numerical modeling was executed to predict the PTT influenced by the power intensity using exponential regression and the PTT influenced by gelatin concentration using logarithmic regression. Therefore, from this numerical model of gelatin matrix, it is possible to estimate exact values extensively.

  • PDF

Numerical modelling and codification of imperfections for cold-formed steel members analysis

  • Dubina, Dan;Ungureanu, Viorel;Rondal, Jacques
    • Steel and Composite Structures
    • /
    • v.5 no.6
    • /
    • pp.515-533
    • /
    • 2005
  • Buckling and post-buckling of cold-formed steel members are rather difficult to predict due to material and geometrical non-linearity. However, numerical techniques have reached a level of maturity such that many are now successfully undertaking ultimate strength analysis of cold-formed steel members. In numerical non-linear analysis, both geometrical and material imperfections, have to be estimated and properly used. They must be codified in terms of shape and magnitude. The presented paper represents a state-of-art report, including relevant results obtained by the authors and collected from literature, on that problem.

Numerical and laboratory investigations of electrical resistance tomography for environmental monitoring

  • Heinson Tania Dhu Graham
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.33-40
    • /
    • 2004
  • Numerical and laboratory studies have been conducted to test the ability of Electrical Resistance Tomography-a technique used to map the electrical resistivity of the subsurface-to delineate contaminant plumes. Two-dimensional numerical models were created to investigate survey design and resolution. Optimal survey design consisted of both downhole and surface electrode sites. Resolution models revealed that while the bulk fluid flow could be outlined, small-scale fingering effects could not be delineated. Laboratory experiments were conducted in a narrow glass tank to validate theoretical models. A visual comparison of fluid flow with ERT images also showed that, while the bulk fluid flow could be seen in most instances, fine-scale effects were indeterminate.

Numerical and experimental investigation of non-stationary processes in the supersonic gas ejector

  • Tsipenko, Anton;Kartovitskiy, Lev;Lee, Ji-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.469-473
    • /
    • 2009
  • The supersonic gas ejector, as gas dynamic appliance, has been applied for a long time because of simplicity and reliability. However, for the prediction of ejector performances with given parameters, that is, working gas pressure and the nozzle shape, it is necessary to raise accuracy of modelling for properties of ejector gas flow. The purpose of the represented work is to compare one-dimensional modelling and numerical results with experimental results. The ejector with a conic nozzle has been designed and tested (Mach number at the nozzle exit section was 3.31, the nozzle throat diameter - 6 mm). Working gas - nitrogen, was brought from system of gas bottles. Diameter of the mixture chamber at the nozzle exit section was limited by condensation temperature of nitrogen and equaled 20 mm. The one-dimensional theory predicted the minimal starting pressure equaled 8.18 bar (absolute) and 0.051 bar in the vacuum chamber. Accordingly the minimal starting pressure was 9.055 bar and 0.057 in the vacuum chamber bar have been fixed in experiment.

  • PDF

ADAPTIVE CVT-BASED REDUCED-ORDER MODELING OF BURGERS EQUATION

  • Piao, Guang-Ri;Du, Qiang;Lee, Hyung-Chun
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.2
    • /
    • pp.141-159
    • /
    • 2009
  • In this article, we consider a weighted CVT-based reduced-order modelling for Burgers equation. Brief review of the CVT (centroidal Voronoi tessellation) approaches to reduced-order bases are provided. In CVT-reduced order modelling, we start with a snapshot set just as is done in a POD (Proper Orthogonal Decomposition)-based setting. So far, the CVT was researched with uniform density ($\rho$(y) = 1) to determine the basis elements for the approximatin subspaces. Here, we shall investigate the technique of CVT with nonuniform density as a procedure to determine the basis elements for the approximating subspaces. Some numerical experiments including comparison of two CVT (CVT-uniform and CVT-nonuniform)-based algorithm with numerical results obtained from FEM(finite element method) and POD-based algorithm are reported.

  • PDF

Centrifugal and Numerical Modelling on the Behavior of Unpropped Diaphragm Wall (Unpropped Diaphragm Wall 거동에 관한 원심 및 수치모델링)

  • Lee, Cheo-Keun;Ahn, Kwang-Kuk;Heo, Yol
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.2
    • /
    • pp.123-134
    • /
    • 2001
  • 본 연구에서는 화강풍화토 지반상 unpropped diaphragm wall의 거동을 연구하기 위하여 벽체의 근입깊이와 지하수위 조건을 변화시키면서 원심모형실험을 수행하였다. 원심모형실험시 diaphragm wall은 두께 8mm인 알루미늄합금을 사용하였으며, 지반굴착을 재현하기 위하여 zinc chloride 기법을 이용하였다. 수치해석은 대부분의 지반공학문제에 적용할 수 있는 SAGE CRISP 프로그램을 이용하였다. 수치해석에서 모형지반은 수정 Cam-Clay 모델, diaphragm wall은 탄성모델, 지반과 diaphragm wall 사이의 경계면요소는 슬립모델을 사용하여 2차원 평면변형률 조건으로 해석을 수행하였다. 모형실험 결과 파괴면의 직선적인 형태로 파괴면내의 배면측 지반은 벽체를 향하여 하향의 변위를 일으키면서 벽체의 회전에 의해 파괴되었다. 실험 및 유한요소해석 결과 지반의 최대침하량과 최대침하량이 발생하는 위치는 잘 일치하였으며, 깊이에 따른 벽체변위는 선형적인 관계를 나타내었다. 또한, 최대 휨모멘트와 근입깊이로 정규화한 최대 휨모멘트 발생위치($h_{Mmax}$/d=0.4)는 잘 일치하였다.

  • PDF