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ABSTRACT. In this article, we consider a weighted CVT-based reduced-order modelling for
Burgers equation. Brief review of the CVT (centroidal Voronoi tessellation) approaches to
reduced-order bases are provided. In CVT-reduced order modelling, we start with a snapshot
set just as is done in a POD (Proper Orthogonal Decomposition)-based setting. So far, the CVT
was researched with uniform density (ρ(y) = 1) to determine the basis elements for the approx-
imating subspaces. Here, we shall investigate the technique of CVT with nonuniform density
as a procedure to determine the basis elements for the approximating subspaces. Some numeri-
cal experiments including comparison of two CVT (CVT-uniform and CVT-nonuniform)-based
algorithm with numerical results obtained from FEM(finite element method) and POD-based
algorithm are reported.

1. INTRODUCTION

Research of reduced-order models to the computational simulation for (nonlinear) complex
systems has recently received an increasing amount of attention. Since the standard discretiza-
tion schemes (finite element, finite difference, finite volume, etc.) may require a great number
of degrees of freedom for the accurate simulation of partial differential equations, applications
of these approaches are expensive with respect to both storage and computing time. Roughly
speaking, the reduced-order approach is based on projecting a complex dynamical system onto
a simple manifold (possibly a linear subspace spanned by some basis elements) that contain
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characteristics of the expected solution. This is in contrast to the traditional numerical meth-
ods such as conventional finite element techniques where the elements of the subspaces are
uncorrelated to the physical properties of the system that they approximate.

The ideas underlying the reduced-basis method appear to have their origins in the sugges-
tions of Almroth [1] and Nagy [26], which were developed by Noor and colleagues [27]-[29] in
the context of simulations for structures and later by Peterson [30] in high Reynolds numbers
incompressible viscous flow simulations. In a nut-shell, the reduced-basis method employs
parameter-dependent solutions of the system to be approximated. These solutions are used to
construct basis elements in the hope that solutions at other parameter values can be represented
in terms of perturbations of solutions given at carefully chosen parameter values (the Lagrange
basis approach) or in terms of a ”moving frame” (the Taylor approach). It is important to note
that the parameter-dependent solutions used as basis functions can be obtained either from
full-order model numerical simulations or experimental data.

The POD technique has been widely discussed in the literature of the past twenty years
and replaced as a tool for model reduction (see [3, 19, 20] and the references cited therein).
The centroidal Voronoi tessellation (CVT) as reduced order modelling technique is an active
research field. Centroidal Voronoi tessellation-based reduced-order modelling of fluid flows
was developed by [21, 22]. In CVT-reduced order modelling, we start with a snapshot set just
as is done in a POD-based setting. However, instead of determining a POD basis from the
snapshot set, we apply our CVT methodologies to determine the generators of a CVT of the
snapshot set; these generators constitute the reduced-order basis. We then use the CVT-based
basis in just the same way as one uses a POD-based basis to determine a very low-dimensional
approximation to the solution of a complex system. CVT also possesses an optimality property,
although it is different from that possessed by POD bases. In this article, we shall investigate
the CVT method as a reduced order model for the unsteady Burgers equation with appropriate
initial and boundary conditions. As a matter of fact, POD and CVT may be viewed as simply
different procedures to determine the basis elements for the approximating subspaces. A more
general framework, CVOD, that combines CVT with POD has also been proposed [9, 14].

So far, the CVT reduced-order modelling problems have been studied in uniform density
(ρ(y) = 1)(see [21]). We term this case “CVT-uniform”. However, sometimes the generators
obtained by CVT-uniform do not lead to satisfactory results in the reduced-order modelling
problems (see [21, 22]). Therefore, to overcome this disadvantage, we extend the uniform
density to more general nonuniform densities (variable densities). We term this case “CVT-
nonuniform”. From the reduced-order basis obtained by CVT-nonuniform, we may achieve
better results in the reduced-order model problems. In this article, we shall investigate the
technique of CVT-nonuniform method as a procedure to determine the basis elements for the
approximating subspaces.

The plan for the rest of paper is as follows. In section 2, we give some definitions and
property of CVT’s, and two approaches for computing these tessellations. In addition, a CVT-
nonuniform algorithm is introduced. Section 3 is devoted to applying CVT to solve the time-
dependent Burgers equation. In section 4, some numerical experiments including comparisons
of the CVT-uniform and CVT-nonuniform algorithms and POD-based algorithm are reported
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based on numerical results from FEM simulations. Then we make concluding remarks in
Section 5.

2. CENTROIDAL VORONOI TESSELLATION BASED MODEL REDUCTION

The concept of the centroidal Voronoi Tessellations (CVTs) has been studied in [13]. CVTs
have been successfully used in several data compression settings, e.g., in image processing and
the clustering of data. Reduced-order modelling of complex systems is another data compres-
sion setting, i.e., one replaces high-dimensional approximations with low-dimensional ones.
CVTs can be used for this purpose as well.

We here consider the case where we are driven a discrete set of points S = {yj}Mj=1 consist-
ing of M vector belonging to RN . The concept of centroidal Voronoi tessellations (CVTs) can
be extended to more general sets, including regions in Euclidean space, and to more general
metrics; for detailed discussions, see [13].

2.1. Definition of CVTs for discrete data sets. The definition of CVT’s for discrete data sets
begins with a set S = {yj}Mj=1 consisting of M vectors belonging to RN . Of course, S can
also be viewed as a set of M points in RN or a possibly complex-valued N ×M matrix. In the
context of CVT, it will be useful to think of the columns {S·,j}Mj=1 of S as the spatial coordinate

vectors of a dynamical system at time tj . Similarly, we consider the rows {Si,·}Ni=1 of S as the
time trajectories of the dynamical system evaluated at the locations xi.

Given a discrete set S belonging to RN , the set {Ti}li=1 is called a clustering or a tessellation
of the set S if Ti ⊂ S for i = 1, · · · , l, Ti ∩ Tj = ∅ for i 6= j, and ∪l

i=1Ti = S. Let | · | denote
the Euclidean norm on RN . Given a set of points {zi}li=1 belonging to RN (but not necessarily
to S), the Voronoi region Vi corresponding to the point zi is defined by

Vi = {y ∈ S | | y − zi | ≤ | y − zj | j = 1, · · · , l, j 6= i},

where equality holds only for i < j. The points {zi}li=1 are called generating points or (cluster)
generators. Such a set {Vi}li=1 is known as a Voronoi tessellation or Voronoi clustering of S
and each Vi is referred to as the Voronoi region or cluster corresponding to zi.

Given a density function ρ(y) defined on S, for each cluster Vi, we can define its cluster
centroid z∗i by

z∗i =

∑
y∈Vi

yρ(y)∑
y∈Vi

ρ(y)
i = 1, · · · , l.

Given a set S of M vectors in RN and a positive integer l ≤M , a centroidal Voronoi tessella-
tion (CVT) or centroidal Voronoi clustering of S is a special Voronoi tessellation satisfying

zi = z∗i i = 1, · · · , l (2.1)

i.e., the generators of the Voronoi tessellation coincide with the centroids of the corresponding
Voronoi clusters. It is important to note that general Voronoi tessellations do not satisfy the
CVT property (2.1) so that, for given a set S and positive integer l, a CVT must be constructed.
Algorithms for this purpose are discussed in subsection 2.2.
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Centroidal Voronoi tessellations are closely related to minimizers of an ”energy”. Specifi-
cally, let

E({zi}li=1, {Vi}li=1) =
l∑

i=1

∑
y∈Vi

|y − zi|2ρ(y), (2.2)

where {Vi}li=1 is a tessellation of S and {zi}li=1 are points in RN . No a priori relation is
assumed between the Vi’s and the zi’s. We refer to E as the ”cluster energy”; in the statistics
literature, it is called the variance or cost. It is easy to prove that a necessary condition for E to
be minimized is that {zi, Vi}li=1 is a centroidal Voronoi tessellation of S; see [13].

The connection between CVTs and reduced-order bases is now easily made. The set S is
obviously the snapshot set. Then the CVT reduced basis set is the set of generators z = {zi}li=1
of a CVT of snapshot set S. In the context of reduced basis modeling, the snapshots are
solutions of the underlying dynamic systems (partial differential equations).

2.2. Algorithms for constructing discrete CVTs. As we have seen, the points that generate
a Voronoi tessellation are not generally the centroids of the associated Voronoi regions. As
a result, one is left with the following construction problem: given a region S ⊂ RN and a
positive integer l, determine an l−point centroidal Voronoi tessellation of S . Among many
known methods for constructing centroidal Voronoi tessellations, we describe the two methods
which are perhaps most ”basic” and, certainly in the first case, the most used.

First, we have Lloyd’s method[23] which is the straightforward iteration between construct-
ing Voronoi tessellations and centroids.

Lloyd’s method: Start with some initial set of l points {zi}li=1 in S, e.g., determined using
random sampling;

(1) construct the Voronoi tessellation {Vi}li=1 of S associated with the points
{zi}li=1;

(2) compute the centroids of the Voronoi regions {Vi}li=1 found in Step 1;
these centroids are the new set of points {zi}li=1;

(3) go back to Step 1, or, if happy with convergence, quit.
Lloyd’s method and its convergence properties have been analyzed; see [13] and [12] and

also the references cited therein.
A second method is McQuee’s method [24] which is a random sampling algorithm that

doesn’t require the explicit construction of Voronoi tessellations or of centroids.
McQueen’s method: Start with some initial set of l points {zi}li=1 in S, e.g., determined

using random sampling; set the integer array Ji = 1fori = 1, · · · , l;
(1) pick a random point y ∈ S;
(2) find the zi closest to y; denote the index of that zi by i∗;

(3) set zi ←
Ji∗zi∗ + y

Ji∗ + 1
and Ji∗ ← Ji∗ + 1;

(4) zi∗ along with the unchanged points {zi}li=1,i 6=i∗ are the new set of points;
(5) go back to Step 1, or, if happy with convergence, quit.
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Note that Ji keeps track of how may times the point zi has been previously updated. Re-
markably (since neither Voronoi tessellations or centroids appear anywhere in the definition of
the algorithm), the McQueen iterations converge to a set of generators of a CVT. The conver-
gence properties of McQueen’s methods have been analyzed in [24].

One point is sampled at each McQueen iteration so that the McQueen iterations are cheap,
but lots of them are needed. Lloyd’s method requires relatively fewer iterations, but each it-
eration is expensive; a straightforward implementation requires the explicit construction of
Voronoi regions and, to determine the centroids, numerical integrations on polyhedra. Varia-
tions that utilize both features of the McQueen algorithm and the Lloyd algorithms have been
given in [18].

So far, the density function was chosen by ρ(·) = 1 (uniform density) in CVT reduced-order
modelling. That is to say, cluster centroid is defined by

zi =
1
ni

∑
y∈Vi

y for i = 1, · · · , l,

where Vi is Voronoi region, y is snapshot, and ni denotes the cardinality of cluster Vi; clearly,∑l
i=1 ni = M , the cardinality of the set S = {yi}li=1. Also, the energy function is defined by

(2.2) with ρ(y) = 1.
For determining CVT’s of discrete point sets that minimizes the energy function, we use the

Lloyd’s method.
Based on the earlier studies of CVT reduced-order modelling ( see [21, 22], etc.), we can see

that the l2-norm errors ( or l2 relative errors) of the difference between the full finite element
solution and the reduced-order solution exhibit strong oscillations during the simulation. For
instance, errors at both ends (starting time and final time) can be quite different from those in
between. Since the reduced-order basis vectors are not constructed with time evolution, we use
the variable density (or nonuniform density) capability of CVT-based reduced-order modelling
to obtain quasi-optimal reduced-order basis without much extra computing cost. In this paper,
we choose a density (or weight) as follow

(1) Derive the reduced-order basis (centroids) by the Lloyd’s algorithm with constant den-
sity (ρ(yi) = 1) from the set of snapshots S = {yN

i (x) : i = 1, . . . ,M};
(2) Compute the approximate solutions {yl} using reduced-order basis (centroids);
(3) Compute the relative error at each time step,

Ei =
||yN

i (x)− yl
i(x)||L2(Ω)

||yN
i (x)||L2(Ω)

, i = 1, . . . ,M (2.3)

where yN
i (x) and yl

i(x) are the snapshots of full finite element solution and reduced
order solution at each time step, respectively;

(4) Then, derive the density from the following formula:

ρ(yi) = exp

(
Ei −

1
M

M∑
i=1

Ei

)
(2.4)
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(5) Derive the reduced-order basis (centroids) by the Lloyd’s algorithm with the density
ρ(y) from the set of snapshots S;

(6) Compute the relative error (2.3). Go back to Step 4, or, stop if the stopping criterion is
satisfied.

Here we want to find the density function which is uniformly distributed as much as possible.
The yl

i and yN
i are CVT-ROM approximate solution and full order finite element approximate

solution at spatial position xi and time t respectively. Although the weight function (2.4) is
not optimal for finding desired reduced-order basis, we use a feedback control idea to obtain
a quasi-optimal reduced-order basis. For other approaches of adaptive density estimation, we
refer to [15].

3. CVT-BASED MODEL REDUCTION FOR THE BURGERS EQUATION

3.1. Generating snapshot sets. We now turn our attention to the computations. We take the
one dimensional Burgers equation as a model problem which has been used in other reduced
modeling studies (see for example [5]). In order to generate a set of snapshots, we wish to
numerically solve Burgers equation with nonhomogeneous Dirichlet boundary conditions on
Ω. Consider Burgers equation

∂y

∂t
(t, x) = ν

∂2y

∂x2
(t, x)− y(t, x)

∂y

∂x
(t, x) + f(t, x) for x ∈ Ω, t > 0, (3.1)

y(t, 0) = 0, y(t, L) = u(t) t > 0, (3.2)

y(0, x) = y0(x) for x ∈ Ω. (3.3)

where, Ω is the finite interval [0, L].
Accurate Galerkin method finite element approximations of the solutions of (3.1)-(3.3) are

obtained using the linear finite element (“hat” function) with N nodes. Finite element solutions
are used for the generation of snapshots and later for comparison with CVT or POD based
reduced-order solutions.

We assume the approximate solution of y(t, x) is defined by

yh(t, x) = u(t)φN+1(x) +
N∑

i=1

ci(t)φi(x), (3.4)

where φn(x)(n = 1, 2, · · · , N + 1) are the linear basis functions on the Ω, u is Dirichlet
boundary condition, h is a discretization parameter and the coefficients ci(t) remain to be
computed; for details, we refer to [4].

We use a variational formulation to define the finite element method to approximate (3.1).
Integrating by parts and using homogeneous Dirichlet boundary conditions yield the weak
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formulation of the problem,∫
Ω

∂yh

∂t
(t, x)w(x)dx = −

∫
Ω
y(t, x)

∂yh

∂x
(t, x)w(x)dx (3.5)

− ν

∫
Ω

∂yh

∂x
(t, x)

∂w

∂x
dx+

∫
Ω
f(t, x)w(x)dx,

where test functionw are in a finite-dimensional subspace Vh of the Sobolev space V = H1
0 (Ω)

Using (3.4), it is easy to see that (3.5) is equivalent to the system of nonlinear ordinary
differential equations

N∑
i=1

d

dt
ci(t)(φi, φj) + ν

N∑
i=1

ci(t)(
dφi

dx
,
dφj

dx
)

+ (
N∑

i=1

ci(t)φi

N∑
k=1

ck(t)
dφk

dx
, φj) + u(t)

N∑
i=1

ci(t)(φN+1
dφi

dx
+ φi

dφN+1

dx
, φj)

+
d

dt
u(t)(φN+1, φj) + νu(t)(

dφN+1

dx
,
dφj

dx
) + u2(t)(φN+1

dφN+1

dx
, φj)

− (f, φj) = 0, j = 1, · · · , N,

(3.6)

along with the initial conditions
N∑

i=1

ci(0)(φi, φj) = (y0 − u(0)φN+1, φj), (3.7)

where (·, ·) denotes the L2(Ω) inner product. The set of ordinary differential equations (3.6)-
(3.7) is solved by using the Adams-Bashforth-Moulton method.

For the generation of snapshots, we will also solve, by the finite element method, stationary
version of (3.1)-(3.3) for which the time derivative term in (3.1) and the initial condition (3.3)
are omitted and u in (3.2) is chosen independent of t. The stationary version equation of (3.1)-
(3.3) is solved easily by the Newton’s method.

The M snapshot vectors

Zm = [c1(tm) c2(tm) · · · cN (tm) u(tm)]T , m = 1, · · · ,M
are determined by evaluating the solution of equation (3.6)-(3.7) at M equally spaced time
values tm,m = 1, ...,M , ranging from t = 0 to t = T . For subsequent use, it is convenient
to modify the M snapshots so that they satisfy homogeneous boundary conditions. To this
end, we first obtain the reference finite element approximation v(x) =

∑N
i=1 vkφi(x) of the

stationary equation of (3.1)-(3.2) with some constant boundary condition c. We then modify
the M snapshots by

Zm ← (Zm −
u(t)
c

V) for m = 1, ...,M.

where V = [v1 v2 · · · vN c]T
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In this way, all the snapshots satisfy homogeneous boundary conditions.

3.2. Determining reduced-order approximation. We next apply the algorithms introduced
in section (2.2) to determine a generators of the CVT from the given snapshot sets; a set of gen-
erators is to be used as a reduced order basis. Note that since the original boundary conditions
have been ”subtracted away,” each basis function satisfies a zero Dirichlet boundary condition,
In the interior of the region, each basis function satisfies the (discretized) continuity equation.

We assume that

ycvt(t, x) = β(t)v(x) +
l∑

i=1

di(t)zi(x),

where v(x) is the steady-state solution of the Burger’s equation, β(t) = u(t)/c, zi denotes the
i − th CVT basis function, di(t) is the corresponding coefficient, and l is the total number of
CVT basis functions.

We consider the approximation Burger’s equation∫
Ω

∂ycvt

∂t
(t, x)zj(x)dx = −

∫
Ω
ycvt(t, x)

∂ycvt

∂x
(t, x)zj(x)dx (3.8)

+ ν

∫
Ω

∂2ycvt

∂x2
(t, x)zj(x)dx+

∫
Ω
f(t, x)zj(x)dx

for j = 1, · · · , l, where zj are test function in subspace of Vh; for details see ([21]). Integrating
by parts and using homogeneous Dirichlet boundary conditions yield the weak formulation of
the problem,

N∑
i=1

d

dt
di(t)(zi, zj) + ν

N∑
i=1

di(t)(
dzi
dx

,
dzj
dx

)

+ (
N∑

i=1

di(t)zi
N∑

k=1

dk(t)
dzk
dx

, zj) + β(t)
N∑

i=1

di(t)(v
dzi
dx

+ zi
dv

dx
, zj)

+
d

dt
β(t)(v, zj) + νβ(t)(

dv

dx
,
dzj
dx

) + β2(t)(v
dv

dx
, zj)

− (f, zj) = 0, j = 1, · · · , l,

(3.9)

along with the initial conditions

N∑
i=1

di(0)(zi, zj) = (y0 − u(0)v, zj), (3.10)

where (·, ·) denotes the L2(Ω) inner product.
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Each basis, generator Zi ∈ RN of a CVT, defined a finite element function, i.e., if Zi =
[Z1

i Z2
i · · · ZN

i ]T , i = 1, · · · , l, we then have the corresponding finite element functions

zi(x) =
N∑

j=1

Zj
i φj(x) for i = 1, · · · , l.

and v(x) is already made in section (3.1).
From the definition of the reduced-order basis, we theoretically could assure that the finite

element approximation (3.5) agrees with the reduced-order approximation (3.8) (see [21]).

4. COMPUTATIONAL EXPERIMENTS

4.1. Setting Up the Problem. Consider the equation (3.1), we wish to compute approximate
solutions of this problem to determine a set of snapshot vectors. The Galerkin finite element
model was described in subsection 3.1 which results in a system of ordinary differential equa-
tions (3.9-3.10).

In our computational code, the numerical schemes are implemented in MATLAB and the
ODEs (3.9)-(3.10) are solved using the Adams-Bashforth-Moulton method. The grid is chosen
to be

xi =
i

N + 1
for i = 0, ..., N + 1 and tj =

jT

m
for j = 0, ...,m− 1.

Most of the examples presented in this thesis employ numerical approximation schemes using
N = 79 elements. This partitions the interval [0, L] into 80 subintervals of uniform length. The
result isN = 79 nodes, making (3.1) system of 79 ordinary differential equations. In this paper,
the programs were written in MATLAB Version 7.1 executed on a INTEL(R) PENTIUM(R) 4
Series computer. As an example of the finite element solution, for the Burgers equation with
the parameters T = 1, ν = 0.01, f = 0, u(t) = 0.3 sin(5t) and y0(x) = sinπx, the numerical
solution to (3.9)-(3.10) is shown in Figure 1 in case of N = 79,m = 80.

4.2. A Comparison to FEM Solutions. The computation of CVT generators is discussed in
the section 2.2. We derive the density from equation (2.4). Note that we take ρ(y) = 1 in the
CVT-uniform method.

In this subsection, we compare three reduced order methods (CVT-uniform, CVT-nonuniform
and POD) of computation. The goal is to verify that different CVT schemes are converging to
the FEM solution as the number of basis is increased. The CVT-uniform method, the CVT-
nonuniform method and the POD method are compared for l = 4, 8 and 16 basis. We conclude
that CVT-uniform, CVT-nonuniform and POD exhibit different accuracy for the three cases.

First of all, we apply the algorithms of subsection 2.3 to determine the generators of a CVT
of the snapshot set which are then used as a reduced-order basis.

Table 1-6 compare, for the 4, 8, and 16 generator cases respectively, population and range of
snapshot indices corresponding to each cluster. Note that the clusters are formed exactly from
a sequence of data points at neighboring times.
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FIGURE 1. Full finite element solution of the Burgers equation (left), Bound-
ary condition: u(L, t) = 0.3sin(5t) (right).

TABLE 1. Cluster statistics for the 4 generators on CVT-uniform.

Cluster Population Range of snapshot indices
1 13 [ 1, 13 ]
2 13 [ 14, 26 ]
3 16 [ 27, 42 ]
4 38 [ 43, 80 ]

total 80 [ 1, 80 ]

TABLE 2. Cluster statistics for the 4 generators on CVT-nonuniform.

Cluster Population Range of snapshot indices
1 14 [ 1, 14 ]
2 17 [ 15, 31 ]
3 37 [ 32, 68 ]
4 12 [ 69, 80 ]

total 80 [ 1, 80 ]

Now, two different CVTs having l = 4, 8 and 16 generators are determined. Figures 2,
3, 9 and 10 display, for the 4 and 8 generator cases respectively, the two types of CVT-basis
computed from the snapshots. The solutions are not normalized. Figures 4 and 11 display, for
the 4 and 8 generator cases, the POD basis computed from the same snapshot data.

It is important to note that, in contrast to the POD basis set, the CVT basis set of size 8 is
not built by augmenting the CVT basis set of size 4; most of the elements of the larger set seem
significantly different from any of those of the smaller set.
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TABLE 3. Cluster statistics for the 8 generators on CVT-uniform.

Cluster Population Range of snapshot indices
1 7 [ 1, 7 ]
2 7 [ 8, 14 ]
3 6 [ 15, 20 ]
4 6 [ 21, 26 ]
5 8 [ 27, 34 ]
6 13 [ 35, 47 ]
7 21 [ 48, 68 ]
8 12 [ 69, 80 ]

total 80 [ 1, 80 ]

TABLE 4. Cluster statistics for the 8 generators on CVT-nonuniform.

Cluster Population Range of snapshot indices
1 6 [ 1, 6 ]
2 7 [ 7, 13 ]
3 8 [ 14, 21 ]
4 10 [ 22, 31 ]
5 11 [ 32, 42 ]
6 12 [ 43, 54 ]
7 16 [ 55, 70 ]
8 10 [ 71, 80 ]

total 80 [ 1, 80 ]

In some computations relating CVT and POD, we have a priori knowledge of the FEM
solution. In this case, we measure the numerical error introduced by the two approximating
schemes, calculating the relative l2 error at time t given by formula (2.3) in section 2.2.

The errors are also shown graphically by computing yl(t, x) and yN (t, x) at N + 2 evenly-
spaced points in each subinterval. For the 4, 8, and 16 generator cases, the numerical solutions
and the actual errors (the difference yl(t, x) − yN (t, x)) are plotted at these points for com-
parison. Figures 5, 6, 12 and 13 display, for the 4, and 8 generator cases respectively, the
CVT-uniform and CVT-nonuniform solutions and the corresponding actual errors. Figures 7
and 14 display, for the 4 and 8 generator cases respectively, POD-based numerical solutions
and the corresponding actual errors.

For the 4, 8, and 16 generator cases, the plots of l2 errors versus time are displayed in
Figures 8 and 15. Note that, l2 errors decrease as the size of the reduced basis set is increased.
Moreover, the very low-dimensional CVT-nonuniform-based reduced order solutions are seen
to achieve considerable accuracy.

Table 7 compares the computational times for the CVT-uniform, CVT-nonuniform and POD
methods using l = 4, 8 and 16. The speed for the CVT-uniform method at l = 8 is slightly
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TABLE 5. Cluster statistics for the 16 generators on CVT-uniform.

Cluster Population Range of snapshot indices
1 2 [ 1, 2 ]
2 3 [ 3, 5 ]
3 3 [ 6, 8 ]
4 4 [ 9, 12 ]
5 4 [ 13, 16 ]
6 3 [ 17, 19 ]
7 3 [ 20, 22 ]
8 3 [ 23 , 25 ]
9 4 [ 26, 29 ]
10 4 [ 30, 33 ]
11 5 [ 34, 38 ]
12 7 [ 39, 45 ]
13 9 [ 46, 54 ]
14 11 [ 55, 65 ]
15 8 [ 66, 73 ]
16 7 [ 74, 80 ]

total 80 [ 1, 80 ]
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FIGURE 2. CVT-uniform basis functions for l = 4.
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FIGURE 3. CVT-nonuniform basis functions for l = 4.

faster than other two methods CVT-nonuniform and POD. For the residue, the speeds are all
similar for each cases.
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TABLE 6. Cluster statistics for the 16 generators on CVT-nonuniform.

Cluster Population Range of snapshot indices
1 6 [ 1, 6 ]
2 6 [ 7, 12 ]
3 5 [ 13, 17 ]
4 5 [ 18, 22 ]
5 4 [ 23, 26 ]
6 5 [ 27, 31 ]
7 5 [ 32, 36 ]
8 4 [ 37 , 40 ]
9 5 [ 41, 45 ]
10 8 [ 46, 53 ]
11 7 [ 54, 60 ]
12 6 [ 61, 66 ]
13 4 [ 67, 70 ]
14 4 [ 71, 74 ]
15 3 [ 75, 77 ]
16 3 [ 78, 80 ]

total 80 [ 1, 80 ]

TABLE 7. Computation times.

the number of generator method computation time
N = 80 FEM 936.4218

POD 0.4844
l = 4 CVT-uniform 0.6719

CVT-nonuniform 0.5000
POD 12.6875

l = 8 CVT-uniform 7.2031
CVT-nonuniform 11.8125
POD 69.7344

l = 16 CVT-uniform 67.7813
CVT-nonuniform 75.1875

5. CONCLUSION

We have introduced and discussed a weighted (nonuniform density) centroidal Voronoi tes-
sellation for low order approximate solution. We found that the approximate solution obtained
by a weighted CVT-based reduced order model for Burgers equation is more accurate than that
obtained by CVT uniform based reduced order model.
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FIGURE 4. POD basis functions for l = 4.

FIGURE 5. CVT-uniform-based reduced order solution (left) and actual errors
using 4 generators.

FIGURE 6. CVT-nonuniform-based reduced order solution (left) and actual
errors using 4 generators.

Future efforts involve application of the reduced bases framework to more complex physi-
cal problems, such as those in fluid flows and materials processing, and more systematically
interpreting how to choose the nonuniform density argument (nonconstant weight function).
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FIGURE 7. POD-based reduced order solution (left) and actual errors using 4 generators.
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FIGURE 8. Relative errors for l = 4.
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FIGURE 9. CVT-uniform basis functions for l = 8.
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FIGURE 10. CVT-nonuniform basis functions for l = 8.
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FIGURE 11. POD basis functions for l = 8.

FIGURE 12. CVT-uniform based reduced order solution (left) and actual er-
rors using 8 generators.
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FIGURE 13. CVT-nonuniform based reduced order solution (left) and actual
errors using 8 generators.

FIGURE 14. POD-based reduced order solution (left) and actual errors using 8 generators.
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FIGURE 15. Relative errors for l = 8 (left) and l = 16 (right) .
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Although the density (2.4) is not optimal in this article, we are obtained realatively accurate
result for reduced-order modelling problems from the bases generated by weight. In any case,
we will continue to research in future for finding the optimal weight function.
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