• 제목/요약/키워드: numerical algorithm

검색결과 4,120건 처리시간 0.026초

반복형 위너 필터 방법에 기반한 재귀적 완전 최소 자승 알고리즘의 견실화 연구 (A study on robust recursive total least squares algorithm based on iterative Wiener filter method)

  • 임준석
    • 한국음향학회지
    • /
    • 제40권3호
    • /
    • pp.213-218
    • /
    • 2021
  • 입력과 출력에 동시에 잡음이 존재하는 경우 최소 자승법 보다는 완전 최소 자승법이 더 우수한 추정 성능을 보인다는 것이 알려져 있다. 완전 최소 자승법을 시계열 특성을 가지는 데이터에 적용할 경우 보다 실시간 성을 더하기 위해서 Recursive Total Least Squares(RTS) 알고리즘이 제안되어 있다. RTLS는 알고리즘 내에 존재하는 역행렬 계산에서 수치적인 불안정성을 지닌다. 본 논문에서는 RTLS와 유사한 수렴성을 지닐 뿐만 아니라 수치적 불안정성을 줄이기 위한 알고리즘을 제안한다. 이 알고리즘을 위해서 Iterative Wiener Filter(IWF)를 적용한 새로운 RTLS를 제안한다. 시뮬레이션을 통해서 수렴성이 기존의 RTLS와 유사할 뿐만 아니라 수치적 견실성이 기존 RTLS보다 향상되었다는 것을 보인다.

비정렬격자 SIMPLE 알고리즘기반 이상유동 수치해석 기법 (NUMERICAL METHOD FOR TWO-PHASE FLOW ANALYSIS USING SIMPLE-ALGORITHM ON AN UNSTRUCTURED MESH)

  • 김종태;박익규;조형규;김경두;정재준
    • 한국전산유체공학회지
    • /
    • 제13권4호
    • /
    • pp.86-95
    • /
    • 2008
  • For analyses of multi-phase flows in a water-cooled nuclear power plant, a three-dimensional SIMPLE-algorithm based hydrodynamic solver CUPID-S has been developed. As governing equations, it adopts a two-fluid three-field model for the two-phase flows. The three fields represent a continuous liquid, a dispersed droplets, and a vapour field. The governing equations are discretized by a finite volume method on an unstructured grid to handle the geometrical complexity of the nuclear reactors. The phasic momentum equations are coupled and solved with a sparse block Gauss-Seidel matrix solver to increase a numerical stability. The pressure correction equation derived by summing the phasic volume fraction equations is applied on the unstructured mesh in the context of a cell-centered co-located scheme. This paper presents the numerical method and the preliminary results of the calculations.

내장 카티지안 경계법과 파동전파 알고리즘을 사용한 충격파 집속 현상의 수치적 시뮬레이션 (NUMERICAL SIMULATION OF SHOCK FOCUSING PHENOMENON BY CARTESIAN EMBEDDED BOUNDARY METHOD AND WAVE PROPAGATION ALGORITHM)

  • 정연규;장근식
    • 한국전산유체공학회지
    • /
    • 제15권2호
    • /
    • pp.14-20
    • /
    • 2010
  • Shock-focusing concave reflectors can have parabolic, circular or elliptic cross-sections. They produce effectively a very high pressure at the focusing point. In the past, many optical images have been obtained on shock focusing via experiments. Measurement of field variables is, however, difficult in the experiment. Using the wave propagation algorithm and the Cartesian embedded boundary method, we have successfully obtained numerical Schlieren images that appear very much like the experimental results. In addition, we obtained the detailed field variables such as pressure, velocity, density and vorticity in the unsteady domain. The present numerical results have made it possible to understand the shock focusing phenomenon in more detail than before.

Nonlinear numerical simulation of RC columns subjected to cyclic oriented lateral force and axial loading

  • Sadeghi, Kabir
    • Structural Engineering and Mechanics
    • /
    • 제53권4호
    • /
    • pp.745-765
    • /
    • 2015
  • A nonlinear Finite Element (FE) algorithm is proposed to analyze the Reinforced Concrete (RC) columns subjected to Cyclic Loading (CL), Cyclic Oriented Lateral Force and Axial Loading (COLFAL), Monotonic Loading (ML) or Oriented Pushover Force and Axial Loading (OPFAL) in any direction. In the proposed algorithm, the following parameters are considered: uniaxial behavior of concrete and steel elements, the pseudo-plastic hinge produced in the critical sections, and global behavior of RC columns. In the proposed numerical simulation, the column is discretized into two Macro-Elements (ME) located between the pseudo-plastic hinges at critical sections and the inflection point. The critical sections are discretized into Fixed Rectangular Finite Elements (FRFE) in general cases of CL, COLFAL or ML and are discretized into Variable Oblique Finite Elements (VOFE) in the particular cases of ML or OPFAL. For pushover particular case, a fairly fast converging and properly accurate nonlinear simulation method is proposed to assess the behavior of RC columns. The proposed algorithm has been validated by the results of tests carried out on full-scale RC columns.

3차원 시추공 레이다 모델링 (Three-Dimensional Borehole Radar Modeling)

  • 예병주
    • 자원환경지질
    • /
    • 제33권1호
    • /
    • pp.41-50
    • /
    • 2000
  • Geo-radar survey which has the advantage of high-resolution and relatively fast survey has been widely used for engineering and environmental problems. Three-dimensional effects have to be considered in the interpretation of geo-radar for high-resolution. However, there exists a trouble on the analysis of the three dimensional effects. To solve this problem an efficient three dimension numerical modeling algorithm is needed. Numerical radar modeling in three dimensional case requires large memory and long calculating time. In this paper, a finite difference method time domain solution to Maxwell's equations for simulating electromagnetic wave propagation in three dimensional media was developed to make economic algorithm which requires smaller memory and shorter calculating time. And in using boundary condition Liao absorption boundary. The numerical result of cross-hole radar survey for tunnel is compared with real data. The two results are well matched. To prove application to three dimensional analysis, the results with variation of tunnel's incident angle to survey cross-section and the result when the tunnel is parallel to the cross-section were examined. This algorithm is useful in various geo-radar survey and can give basic data to develop dat processing and inversion program.

  • PDF

비정렬격자 SIMPLE 알고리즘기반 이상유동 수치해석 기법 (NUMERICAL METHOD FOR TWO-PHASE FLOW ANALYSIS USING SIMPLE-ALGORITHM ON AN UNSTRUCTURED MESH)

  • 김종태;박익규;조형규;김경두;정재준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.71-78
    • /
    • 2008
  • For analyses of multi-phase flows in a water-cooled nuclear power plant, a three-dimensional SIMPLE-algorithm based hydrodynamic solver CUPID-S has been developed. As governing equations, it adopts a two-fluid three-field model for the two-phase flows. The three fields represent a continuous liquid, a dispersed droplets, and a vapour field. The governing equations are discretized by a finite volume method on an unstructured grid to handle the geometrical complexity of the nuclear reactors. The phasic momentum equations are coupled and solved with a sparse block Gauss-Seidel matrix solver to increase a numerical stability. The pressure correction equation derived by summing the phasic volume fraction equations is applied on the unstructured mesh in the context of a cell-centered co-located scheme. This paper presents the numerical method and the preliminary results of the calculations.

  • PDF

비정렬격자 SIMPLE 알고리즘기반 이상유동 수치해석 기법 (NUMERICAL METHOD FOR TWO-PHASE FLOW ANALYSIS USING SIMPLE-ALGORITHM ON AN UNSTRUCTURED MESH)

  • 김종태;박익규;조형규;김경두;정재준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.71-78
    • /
    • 2008
  • For analyses of multi-phase flows in a water-cooled nuclear power plant, a three-dimensional SIMPLE-algorithm based hydrodynamic solver CUPID-S has been developed. As governing equations, it adopts a two-fluid three-field model for the two-phase flows. The three fields represent a continuous liquid, a dispersed droplets, and a vapour field. The governing equations are discretized by a finite volume method on an unstructured grid to handle the geometrical complexity of the nuclear reactors. The phasic momentum equations are coupled and solved with a sparse block Gauss-Seidel matrix solver to increase a numerical stability. The pressure correction equation derived by summing the phasic volume fraction equations is applied on the unstructured mesh in the context of a cell-centered co-located scheme. This paper presents the numerical method and the preliminary results of the calculations.

  • PDF

준능동 아웃리거 댐퍼시스템의 진동제어 성능평가 (Vibration Control Performance Evaluation of Semi-active Outrigger Damper System)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제15권4호
    • /
    • pp.81-89
    • /
    • 2015
  • Damped outrigger systems have been proposed as a novel energy dissipation system to protect tall buildings from severe earthquakes and strong wind loads. In this study, semi-active damping devices such as magnetorheological (MR) dampers instead of passive dampers are installed vertically between the outrigger and perimeter columns to achieve large and adaptable energy dissipation. Control performance of semi-active outrigger damper system mainly depends on the control algorithm. Fuzzy logic control algorithm was used to generate command voltage sent to MR damper. Genetic algorithm was used to optimize the fuzzy logic controller. An artificial earthquake load was generated for numerical simulation. A simplified numerical model of damped outrigger system was developed. Based on numerical analyses, it has been shown that the semi-active damped outrigger system can effectively reduce both displacement and acceleration responses of the tall building in comparison with a passive outrigger damper system.

적응순향 제어(ACC) 차량의 제어 알고리즘 및 실시간 수치실험 프로그램 개발 (Development of Control Algorithm and Real Time Numerical Simulation Program for Adaptive Cruise Control Vehicles)

  • 원문철;강연준;강병배
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.202-213
    • /
    • 1999
  • Adaptive Cruise Control (ACC) is one of key features on intelligent Transportation System(ITS). In ACC, the steering is done by a driver, but the engine throttle valve and the brake are controlled electronically. The relative velocity and distance from the preceeding vehicle are measured by radars or image processing units and relevant vehicular spacing is maintained in ACC control systems. In this study, vehicle longitudinal dynamics are modeled to simulate vehicle longitudinal maneuver and to design longtitudinal controllers for ACC vehicles. The control algorithm is designed based on the modeled vehicle longitudinal dynamics using a non-linear sliding mode control method. To verity the performance of the control algorithm, a real time numerical simulation program is developed on a Silicon Graphics workstation using C-language . A real time graphic program is alos develpe and integrated with the numerical simulation program.

  • PDF

유전 알고리즘을 이용한 전력조류계산 (Power Flow calculation Using Genetic Algorithms)

  • 이태형;채명석;임한석;신중린
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.130-132
    • /
    • 1996
  • The power flow calculations(PFc) are the most important and powerful tools in power systems engineering. The conventional power now problem is solved generally with numerical methods such as Newton-Raphson. The conventional numerical method generally have some convergency problem, which is sensitive to initial value, and numerical stability problem concerned with matrix inversion. This paper presents a new power flow calculation algorithm based on the genetic algorithm(GA) which can overcome the disadvantages mentioned above. Some case studies with IEEE 6 bus system also presented to show the performance of proposed algorithm.

  • PDF