• Title/Summary/Keyword: numerical Model

Search Result 15,989, Processing Time 0.049 seconds

Primary somatosensory cortex and periaqueductal gray functional connectivity as a marker of the dysfunction of the descending pain modulatory system in fibromyalgia

  • Matheus Soldatelli;Alvaro de Oliveira Franco;Felipe Picon;Juliana Avila Duarte;Ricardo Scherer;Janete Bandeira;Maxciel Zortea;Iraci Lucena da Silva Torres;Felipe Fregni;Wolnei Caumo
    • The Korean Journal of Pain
    • /
    • v.36 no.1
    • /
    • pp.113-127
    • /
    • 2023
  • Background: Resting-state functional connectivity (rs-FC) may aid in understanding the link between painmodulating brain regions and the descending pain modulatory system (DPMS) in fibromyalgia (FM). This study investigated whether the differences in rs-FC of the primary somatosensory cortex in responders and non-responders to the conditioned pain modulation test (CPM-test) are related to pain, sleep quality, central sensitization, and the impact of FM on quality of life. Methods: This cross-sectional study included 33 females with FM. rs-FC was assessed by functional magnetic resonance imaging. Change in the numerical pain scale during the CPM-test assessed the DPMS function. Subjects were classified either as non-responders (i.e., DPMS dysfunction, n = 13) or responders (n = 20) to CPM-test. A generalized linear model (GLM) and a receiver operating characteristic (ROC) curve analysis were performed to check the accuracy of the rs-FC to differentiate each group. Results: Non-responders showed a decreased rs-FC between the left somatosensory cortex (S1) and the periaqueductal gray (PAG) (P < 0.001). The GLM analysis revealed that the S1-PAG rs-FC in the left-brain hemisphere was positively correlated with a central sensitization symptom and negatively correlated with sleep quality and pain scores. ROC curve analysis showed that left S1-PAG rs-FC offers a sensitivity and specificity of 85% or higher (area under the curve, 0.78, 95% confidence interval, 0.63-0.94) to discriminate who does/does not respond to the CPM-test. Conclusions: These results support using the rs-FC patterns in the left S1-PAG as a marker for predicting CPM-test response, which may aid in treatment individualization in FM patients.

Modeling of algal fluctuations in the reservoir according to the opening of Yeongju Dam (영주댐 개방에 따른 호내 조류 변동 모의)

  • Lee, Dong Yeol;Kim, Seong Eun;Baek, Kyong Oh
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.3
    • /
    • pp.173-184
    • /
    • 2023
  • Due to climate change, algal blooms frequently occur not only in Korea but also around the world, and the risk of toxicity of harmful algae has recently been issued. It is known that the representative harmful algae, cyanobacteria, are caused by the intersection of three factors: water temperature, residence time, and nutrients. In this study, water quality simulation was carried out using EFDC, a three-dimensional numerical model, to analyze the variations in water quality due to the decrease of residence time according to the opening of Yeongju Dam in Naeseong-Cheon. In fact, the concentration of chlorophyll-a in Yeongju Dam in the summer of 2021 was significant, exceeding the 'algae warning' for a long time based on the previous algae warning system. On the other hand, as a result of performing the simulation under the condition that the dam gate was completely opened, the concentration of chlorophyll-a was mostly reduced below the 'algae warning' level during the simulation period. It was confirmed that reducing the residence time by restoring the flow of Naeseong-Cheon is a way to immediately reduce algae in Yeongju Dam.

Vehicle Collision Simulation for Roadblocks in Nuclear Power Plants Using LS-DYNA (LS-DYNA를 이용한 원자력발전소의 로드블록에 대한 차량 충돌 시뮬레이션)

  • SeungGyu Lee;Dongwook Kim;Phill-Seung Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.2
    • /
    • pp.113-120
    • /
    • 2023
  • This paper introduces a simulation method for the collision between roadblocks and vehicles using LS-DYNA. The need to evaluate the performance of anti-ram barriers to prepare for vehicle impact has increased since vehicle impact threats have been included as a design criterion for nuclear power plants. Anti-ram barriers are typically certified for their performance through collision experiments. However, because Koreas has no performance testing facilities for anti-ram barriers, their performance can only be verified through simulations. LS-DYNA is a specialized program for collision simulation. Various organizations, including NCAC, distributes numerical models that have been validated for their accuracy with collision tests. In this study, we constructed a finite element model of the most critical vehicle barrier module and simulated collision between roadblocks and vehicles. The calculated results were verified by applying the validation criteria for vehicle safety facility collision simulations of NCHRP 179.

End Bearing Capacity of Pile Tip-enlarged PHC Piles in Weathered Rock (풍화암에 근입된 선단확장형 PHC 말뚝의 선단지지력)

  • Yoo, Chung-Sik;Heo, Kab-Soo;Song, Ki-Yong;Kim, Sun-Bin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.1
    • /
    • pp.23-37
    • /
    • 2007
  • Recently a concept of pile-tip enlarged PHC pile (Ext-PHC pile), for use in the auger-drilled construction method, has been developed and is being implemented in practice. A series of field axial load tests on both PHC and Ext-PHC piles were conducted at an experimental site. In addition, a parametric study on a number of influencing factors was made using a validated finite element model. The field axial load tests indicated an enhanced load-settlement characteristics for the Ext-PHC piles compared with the PHC piles, giving approximately 50% increase in the end bearing capacity. Also found in the results of the parametric study was that the increase in the end bearing capacity of Ext-PHC piles slightly varies with the mechanical properties of supporting ground as well as pile length, in the range of 1.25 to 1.4 time that of PHC. Overall, the results of the field tests as well as the numerical study confirmed that the end bearing capacity of PHC pile can be improved by the concept of.Ext-PHC pile.

Comparison of CNN and GAN-based Deep Learning Models for Ground Roll Suppression (그라운드-롤 제거를 위한 CNN과 GAN 기반 딥러닝 모델 비교 분석)

  • Sangin Cho;Sukjoon Pyun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.37-51
    • /
    • 2023
  • The ground roll is the most common coherent noise in land seismic data and has an amplitude much larger than the reflection event we usually want to obtain. Therefore, ground roll suppression is a crucial step in seismic data processing. Several techniques, such as f-k filtering and curvelet transform, have been developed to suppress the ground roll. However, the existing methods still require improvements in suppression performance and efficiency. Various studies on the suppression of ground roll in seismic data have recently been conducted using deep learning methods developed for image processing. In this paper, we introduce three models (DnCNN (De-noiseCNN), pix2pix, and CycleGAN), based on convolutional neural network (CNN) or conditional generative adversarial network (cGAN), for ground roll suppression and explain them in detail through numerical examples. Common shot gathers from the same field were divided into training and test datasets to compare the algorithms. We trained the models using the training data and evaluated their performances using the test data. When training these models with field data, ground roll removed data are required; therefore, the ground roll is suppressed by f-k filtering and used as the ground-truth data. To evaluate the performance of the deep learning models and compare the training results, we utilized quantitative indicators such as the correlation coefficient and structural similarity index measure (SSIM) based on the similarity to the ground-truth data. The DnCNN model exhibited the best performance, and we confirmed that other models could also be applied to suppress the ground roll.

Numerical investigation on cavitation and non-cavitation flow noise on pumpjet propulsion (펌프젯 추진기의 공동 비공동 유동소음에 대한 수치적 연구)

  • Garam Ku;Cheolung Cheong;Hanshin Seol;Hongseok Jeong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.250-261
    • /
    • 2023
  • In this study, the noise contributions by the duct, stator and rotor, which are the propulsor components, are evaluated to identify the flow noise source in cavitation and non-cavitation conditions on pumpjet propulsion and the noise levels in both conditions are compared. The unsteady incompressible Reynolds averaged Navier-Stokes (RANS) equation based on the homogeneous mixture assumption is applied on the suboff submarine hull and pumpjet propeller in the cavitation tunnel, and the Volume of Fluid (VOF) method and Schnerr-Sauer cavitation model are used to describe the two-phase flow. Based on the flow simulation results, the acoustic analogy formulated by Ffowcs Williams and Hawkings (FW-H) equation is applied to predict the underwater radiated noise. The noise contributions are evaluated by using the three types of impermeable integral surface on the duct, stator and rotor, and the two types of permeable integral surface surrounding the propulsor. As a result of noise prediction, the contribution by the stator is insignificant, but it affects the generation of flow noise source due to flow separation in the duct and rotor, and the noise is predominantly radiated into the upward and right where the flow separations are. Also, the noise is radiated into the thrust direction due to pressure fluctuation between suction and pressure sides on the rotor blades, and the it can be seen that the cavitation effect into the noise can be considered through the permeable integral surface.

Application of Depth Resolution and Sensitivity Distribution of Electrical Resistivity Tomography to Modeling Weathered Zones and Land Creeping (전기비저항 깊이분해능 및 감도분포: 풍화층 및 땅밀림 모델에 대한 적용)

  • Kim, Jeong-In;Kim, Ji-Soo;Ahn, Young-Don;Kim, Won-Ki
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.157-171
    • /
    • 2022
  • Electrical resistivity tomography (ERT) is a traditional and representative geophysical method for determining the resistivity distributions of surrounding soil and rock volumes. Depth resolution profiles and sensitivity distribution sections of the resistivities with respect to various electrode configurations are calculated and investigated using numerical model data. Shallow vertical resolution decreases in the order of Wenner, Schlumberger, and dipole-dipole arrays. A high investigable depth in homogeneous medium is calculated to be 0.11-0.19 times the active electrode spacing, but is counterbalanced by a low vertical resolution. For the application of ERT depth resolution profiles and sensitivity distributions, we provide subsurface structure models for two types of land-creping failure (planar and curved), subvertical fracture, and weathered layer over felsic and mafic igneous rocks. The dipole-dipole configuration appears to be most effective for mapping land-creeping failure planes (especially for curved planes), whereas the Wenner array gives the best resolution of soil horizons and shallow structures in the weathered zone.

Effects of particle size and loading rate on the tensile failure of asphalt specimens based on a direct tensile test and particle flow code simulation

  • Q. Wang;D.C. Wang;J.W. Fu;Vahab Sarfarazi;Hadi Haeri;C.L. Guo;L.J. Sun;Mohammad Fatehi Marji
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.607-619
    • /
    • 2023
  • This study, it was tried to evaluate the asphalt behavior under tensile loading conditions through indirect Brazilian and direct tensile tests, experimentally and numerically. This paper is important from two points of view. The first one, a new test method was developed for the determination of the direct tensile strength of asphalt and its difference was obtained from the indirect test method. The second one, the effects of particle size and loading rate have been cleared on the tensile fracture mechanism. The experimental direct tensile strength of the asphalt specimens was measured in the laboratory using the compression-to-tensile load converting (CTLC) device. Some special types of asphalt specimens were prepared in the form of slabs with a central hole. The CTLC device is then equipped with this specimen and placed in the universal testing machine. Then, the direct tensile strength of asphalt specimens with different sizes of ingredients can be measured at different loading rates in the laboratory. The particle flow code (PFC) was used to numerically simulate the direct tensile strength test of asphalt samples. This numerical modeling technique is based on the versatile discrete element method (DEM). Three different particle diameters were chosen and were tested under three different loading rates. The results show that when the loading rate was 0.016 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis till coalescence to the model boundary. When the loading rate was 0.032 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis. The branching occurs in these cracks. This shows that the crack propagation is under quasi-static conditions. When the loading rate was 0.064 mm/sec, mixed tensile and shear cracks were initiated below the loading walls and branching occurred in these cracks. This shows that the crack propagation is under dynamic conditions. The loading rate increases and the tensile strength increases. Because all defects mobilized under a low loading rate and this led to decreasing the tensile strength. The experimental results for the direct tensile strengths of asphalt specimens of different ingredients were in good accordance with their corresponding results approximated by DEM software.

Analysis of Organic Carbon Mass Balance in Daecheong Reservoir Using a Three-dimensional Numerical Model (3차원 수치 모델을 이용한 대청호 유기탄소 물질수지 해석)

  • Kim, Dong Min;An, In Kyung;Min, Kyug Seo;Chung, Se Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.62-62
    • /
    • 2021
  • 산업 고도화로 인하여 복잡하고 다양한 유기물의 사용량이 증가하였으며, 공공수역 내 새로운 오염물질이 유입됨에 따라 생화학적 산소요구량(BOD) 중심의 수질평가에 한계를 나타내었다. 이후 난분해성 물질을 고려한 유기물관리 정책과 총량관리의 필요성이 제기되었고 국내 하천과 호소에서는 총 유기탄소(TOC)를 유기물 관리지표로 설정하였다. 그러나 부영양 하천과 호소에서 TOC는 외부 부하뿐만아니라 식물플랑크톤의 과잉성장에 의해 증가할 수 있는 항목이므로 TOC 관리정책 추진을 위해서는 유기물의 기원에 대한 파악이 필요하다. 특히, 국내 하천에서 나타나고 있는 난분해성 유기물 오염도의 증가 추세에 대응한 실효성 있는 유기물 오염관리 정책을 수립하기 위해서는 다양한 유기물의 근원을 정확하게 파악하는 것이 매우 중요하다. 본 연구의 목적은 금강 수계 최대 상수원인 대청호를 대상으로 3차원 수리-수질 모델을 적용하여 유기탄소 성분 별 유입과 유출, 내부생성 및 소멸량을 평가하고 저수지시스템에서의 유기탄소 물질수지를 해석하는 데 있다. 유기탄소 물질수지 해석을 위해 AEM3D 모델을 사용하였으며 2017년을 대상으로 입력자료를 구축한 후 보정을 수행하였고 2018년을 대상으로 모델을 검정하였다. 모델은 유기탄소를 입자성, 용존성, 그리고 난분해성과 생분해성으로 구분하여 모의하며 유기물질 성상별 실험결과를 이용하여 입력자료를 구축하였다. 유기탄소 물질수지 해석을 위해 4가지의 탄소성분과 조류 세포 내 탄소의 질량 변화율을 계산하였다. 이를 위해 외부 유입·유출부하율, 수체 내 생성(일차생산, 재부상, 퇴적물과 수체 간 확산) 및 소멸률(POC 및 조류 침강, DOC 무기화, 탈질)을 고려하였다. 모델은 2017년과 2018년의 물수지를 적절히 재현하였으며 저수지의 성층구조를 잘 재현해내면서 전반적인 수온, 수질을 적절하게 모의하였다. 연간 TOC 부하량 중 내부기원 부하량은 2017년 68.4 %, 2018년은 높은 강우량의 영향으로 55.0%로 산정되었다. 내부 소멸 기작 중 침전으로 인한 손실이 가장 높은 것으로 나타났으며, 2017년과 2018년 각각 31.3%, 29.0%로 나타났다. TOC의 공간분포는 Chl-a 농도 분포와 유사하게 나타났으며, 댐 설치로 형성된 정체수역은 유역의 유기물 순환에 많은 영향을 미치는 것으로 평가되었다. TOC 관리 정책 기초자료 확보를 위해서는 향후 유역-저수지 시스템을 연계한 유기물 물질순환 심층 연구가 필요하다.

  • PDF

Inelastic Dynamic Analysis of Structure Subjected to Across-Wind Load (풍직각방향 풍하중이 작용하는 구조물의 비탄성 동적 해석)

  • Ju-Won Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.185-192
    • /
    • 2023
  • In this study, fluctuating wind velocity for time history analysis is simulated by a single variate, single-dimensional random process using the KBC2022 spectrum about across-wind direction. This study analyzed and obtained the inelastic dynamic response for structures modeled as a single-degree-of-freedom system. It is assumed that the wind response is excellent in the primary mode, the change in vibration owing to plasticization is minor, along-wind vibration and across-wind vibration are independent, and the effect of torsional vibration is small. The numerical results, obtained by the Newmark-𝛽 method, shows the time-history responses and trends of maximum displacements. As a result of analyzing the inelastic dynamic response of the structure with the second stiffness ratio(𝛼) and yield displacement ratio (𝛽) as variables, it is identified that as the yield displacement ratio (𝛽) increases when the second stiffness ratio is constant, the maximum displacement ratio decreases, then reaches a minimum value, and then increases. When the stiffness ratio is greater than 0.5, there is a yield point ratio at which the maximum displacement ratio is less than 1, indicating that the maximum deformation is reduced compared to the elastically designed building even if the inelastic behavior is permitted in the inelastic wind design.