• 제목/요약/키워드: numeric prediction algorithm

검색결과 5건 처리시간 0.017초

수치 예측 알고리즘 기반의 풍속 예보 모델 학습 (Learning Wind Speed Forecast Model based on Numeric Prediction Algorithm)

  • 김세영;김정민;류광렬
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권3호
    • /
    • pp.19-27
    • /
    • 2015
  • 대체 에너지 기술 개발을 위해 지난 20년 동안 풍력 발전에 관련한 기술들이 축적되어왔다. 풍력 발전은 자연적으로 부는 바람을 에너지원으로 사용하므로 환경 친화적이며 경제적이다. 이러한 풍력 발전의 효율적인 운영을 위해서는 시시각각 변하는 자연 바람의 세기를 정확도 높게 예측할 수 있어야 한다. 풍속을 평균적으로 얼마나 정확하게 잘 예측하는지도 중요하지만 실제 값과 예측 값의 절대 오차의 최댓값을 최소화시키는 것 또한 중요하다. 발전 운영 계획 측면에서 예측 풍속을 통한 예측 발전량과 실제 발전량의 차이는 경제적 손실을 가져오는 원인이 되므로 유연한 운영 계획을 세우기 위해 최대 오차가 중요한 역할을 한다. 본 논문에서는 풍속 예측 방법으로 과거 풍속 변화 추세뿐만 아니라 기상청 예보와 시기적인 풍속의 특성을 고려하기 위한 경향 값을 반영하여 수치 예측 알고리즘으로 학습한 풍속 예보 모델을 제안한다. 기상청 예보는 풍력 발전 단지를 포함하는 비교적 넓은 지역의 풍속을 예보하지만 풍속을 예측하고자 하는 국소지점에 대한 풍속 예측의 정확도를 높이는데 상당히 기여한다. 또한 풍속 변화 추세는 긴 시간동안 관측한 풍속을 세세하게 반영할수록 풍속 예측의 정확도를 높인다.

사용자 간 신뢰·불신 관계 네트워크 분석 기반 추천 알고리즘에 관한 연구 (A Study on the Recommendation Algorithm based on Trust/Distrust Relationship Network Analysis)

  • 노희룡;안현철
    • Journal of Information Technology Applications and Management
    • /
    • 제24권1호
    • /
    • pp.169-185
    • /
    • 2017
  • This study proposes a novel recommendation algorithm that reflects the results from trust/distrust network analysis as a solution to enhance prediction accuracy of recommender systems. The recommendation algorithm of our study is based on memory-based collaborative filtering (CF), which is the most popular recommendation algorithm. But, unlike conventional CF, our proposed algorithm considers not only the correlation of the rating patterns between users, but also the results from trust/distrust relationship network analysis (e.g. who are the most trusted/distrusted users?, whom are the target user trust or distrust?) when calculating the similarity between users. To validate the performance of the proposed algorithm, we applied it to a real-world dataset that contained the trust/distrust relationships among users as well as their numeric ratings on movies. As a result, we found that the proposed algorithm outperformed the conventional CF with statistical significance. Also, we found that distrust relationship was more important than trust relationship in measuring similarities between users. This implies that we need to be more careful about negative relationship rather than positive one when tracking and managing social relationships among users.

기계학습 알고리즘을 이용한 UAS 제어계수 실시간 자동 조정 시스템 (UAS Automatic Control Parameter Tuning System using Machine Learning Module)

  • 문미선;송강;송동호
    • 한국항행학회논문지
    • /
    • 제14권6호
    • /
    • pp.874-881
    • /
    • 2010
  • 무인기의 자동 비행 제어 시스템은 기체의 형태, 크기, 무게 등의 정적 및 동적 변화에 따라 스스로 비행계수를 조정하여 목표 비행궤적을 정확히 따라가도록 제어할 필요가 있다. 본 논문에서는 PID 제어 기법을 이용하는 비행제어시스템에 기계학습모듈(MLM)을 추가하여 기체의 특성 변화에 따라 제어계수를 비행중 실시간 자동으로 조정하는 시스템을 제안한다. MLM은 선형회귀분석과 보정학습을 이용하여 설계되었으며 MLM을 통해 학습된 제어계수의 적합성을 평가하는 평가모듈(EvM)을 함께 모델링 하였다. 이 시스템은 FDC 비버 시뮬레이터를 기반으로 실험하였으며 그 결과를 분석 제시하였다.

유전자 알고리즘을 활용한 소셜네트워크 기반 하이브리드 협업필터링 (Social Network-based Hybrid Collaborative Filtering using Genetic Algorithms)

  • 노희룡;최슬비;안현철
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.19-38
    • /
    • 2017
  • 본 연구는 사용자 평점 이외에 사용자 간 직접 간접적 신뢰 및 불신 관계 네트워크의 분석 결과를 추가로 반영한 새로운 하이브리드 협업필터링(Collaborative filtering, CF) 추천방법을 제안한다. 구체적으로 사용자 간의 유사도를 계산할 때 사용자 평가점수의 유사성만을 고려하는 기존의 CF와 다르게, 사용자 신뢰 및 불신 관계 데이터의 사회연결망분석 결과를 추가적으로 고려하여 보다 정교하게 사용자 간의 유사도를 산출하였다. 이 때, 사용자 간의 유사도를 재조정하는 접근법으로 특정 이웃 사용자가 신뢰 및 불신 관계 네트워크에서 높은 신뢰(또는 불신)를 받을 때, 추천 대상이 되는 사용자와 해당 이웃 간의 유사도를 확대(강화) 또는 축소(약화)하는 방안을 제안하고, 더 나아가 최적의 유사도 확대 또는 축소의 정도를 결정하기 위해 유전자 알고리즘(genetic algorithm, GA)을 적용하였다. 본 연구에서는 제안 알고리즘의 성능을 검증하기 위해, 특정 상품에 대한 사용자의 평가점수와 신뢰 및 불신 관계를 나타낸 실제 데이터에 추천 알고리즘을 적용하였으며 그 결과, 기존의 CF와 비교했을 때 통계적으로 유의한 수준의 예측 정확도 개선이 이루어짐을 확인할 수 있었다. 또한 신뢰 관계 정보보다는 불신 관계 정보를 반영했을 때 예측 정확도가 더 향상되는 것으로 나타났는데, 이는 사회적인 관계를 추적하고 관리하는 측면에서 사용자 간의 불신 관계에 대해 좀 더 주목해야 할 필요가 있음을 시사한다.

Stock prediction using combination of BERT sentiment Analysis and Macro economy index

  • Jang, Euna;Choi, HoeRyeon;Lee, HongChul
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권5호
    • /
    • pp.47-56
    • /
    • 2020
  • 주가지수는 한 국가의 경제 지표뿐만 아니라 투자판단의 지표로도 활용되므로 이를 예측하는 연구가 지속해서 진행되고 있다. 주가지수 예측을 하는 작업은 기술적, 경제적 및 심리적 요인 등이 반영된 것으로 예측의 정확도를 위해서는 복합적 요인을 고려해야 한다. 따라서 지수의 변동에 영향을 미치는 요인들을 선별하여 반영한 주가지수 예측모델연구가 필요하다. 이와 관련한 기존 연구에서는 시장의 변동을 만들어 내는 뉴스 정보 또는 거시 경제 지표를 각각 이용하거나, 몇 가지의 지표 조합만을 반영한 예측 연구가 대부분이었다. 따라서 본 연구에서는 미국 다우존스지수 예측을 위해 뉴스 정보의 감성 분석과 다양한 거시경제지표를 고려하여 효과적인 지표 조합을 제시하고자 한다. 뉴스 정보의 감성 분석은 최신 자연어처리 기법인 BERT와 NLTK VADER를 사용하고, 예측모델은 주가예측모델로 적합하다고 알려진 딥러닝 예측모델 LSTM을 적용하여 가장 효과적인 지표 조합을 제시했다.