• Title/Summary/Keyword: nuclide transport

Search Result 36, Processing Time 0.028 seconds

A Control Volume Scheme for Three-Dimensional Transport: Buffer and Matrix Effects on a Decay Chain Transport in the Repository

  • Lee, Y.M.;Y.S. Hwang;Kim, S.G.;C.H. Kang
    • Nuclear Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.218-231
    • /
    • 2002
  • Using a three-dimensional numerical code, B3R developed for nuclide transport of an arbitrary length of decay chain in the buffer between the canister and adjacent rock in a high- level radioactive waste repository by adopting a finite difference method utilizing the control- volume scheme, some illustrative calculations have been done. A linear sorption isotherm, nuclide transport due to diffusion in the buffer and the rock matrix, and advection and dispersion along thin rigid parallel fractures existing in a saturated porous rock matrix as well as diffusion through the fracture wall into the matrix is assumed. In such kind of repository, buffer and rock matrix are known to be important physico-chemical harriers in nuclide retardation. To show effects of buffer and rock matrix on nuclide transport in HLW repository and also to demonstrate usefulness of B3R, several cases of breakthrough curves as well as three- dimensional plots of concentration isopleths associated with these two barriers are introduced for a typical case of decay chain of $^{234}$ Ulongrightarrow$^{230}$ Thlongrightarrow$^{226}$ Ra, which is the most important chain as far as the human environment is concerned.

Two-Dimensional Nuclide Transport Around a HLW Repository

  • Lee, Youn-Myoung;Kang, Chul-Hyung;Hwang, Yong-Soo;Chun, Kwan-Sik
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.432-443
    • /
    • 1999
  • Using a two-dimensional numerical model, nuclide transport in the buffer between the canister and adjacent rock in a high-level radioactive waste repository is dealt with. Calculations are made for a typical case with a three-member decay chain, $^{234}$ U longrightarrow $^{230}$ Th longrightarrow $^{226}$ Ra. The solution method used here is based on a physically exact formulation by a control volume method directly integrating the governing equation over each control volume.

  • PDF

A Nuclide Decay Chain Transport Model by the Method of Characteristics

  • Lee, Youn-Myoung;Kang, Chul-Hyung;Hahn, Pil-Soo;Chun, Kwan-Sik
    • Nuclear Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.320-326
    • /
    • 1997
  • The nuclide transport in the one-dimensional porous medium is considered as a first step in developing a decay chain transport in multidimensional inhomogeneous media. A method of solving conventional advection-dispersion equation with decay chain of arbitrary length by using the method of characteristics (MOC) is introduced. In specific cases where the advection are dominant rather than dispersion, the method is known to be useful : one of the most distinctive advantages in applying the model is that the MU minimizes the numerical dispersion, which is distinguished in such common numerical schemes as finite element method and finite difference method. The suggested model is considered to be effective through several illustrations for the case that decay chain of arbitrary length is involved during transport which is difficult to solve by standard numerical solutions if the medium becomes more complicated.

  • PDF

Understanding and Their Application of GoldSim Transport Pathways to Mass Trasport Simulation (질량 이동 모사 프로그램 개발을 위한 골드심 이동 패쓰웨이의 이해와 활용)

  • Lee, Youn-Myoung;Jeong, Jongtae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.135-151
    • /
    • 2014
  • It is very important to properly understand such "Transport Pathways" elements as "Pipe" and "Cell" pathways in commercial GoldSim Transport Module (GTM) for developing higer quality models and programs for performance assessment of complex radioactive waste repositories. With an illustrative case under an earthquake scenario, by which an increasement in the groundwater flow rate occurs though the geological medium, ways of avoiding possible modeling errors in the nuclide transport modeling in the radioactive waste repository system for its safety assessment by utilizing such pathways are discussed and a proper usage of the pathways is proposed.

Continuous Time Markov Process Model for Nuclide Decay Chain Transport in the Fractured Rock Medium (균열 암반 매질에서의 핵종의 붕괴사슬 이동을 위한 연속시간 마코프 프로세스 모델)

  • Lee, Y.M.;Kang, C.H.;Hahn, P.S.;Park, H.H.;Lee, K.J.
    • Nuclear Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.539-547
    • /
    • 1993
  • A stochastic approach using continuous time Markov process is presented to model the one-dimensional nuclide transport in fractured rock media as a further extension for previous works[1-3]. Nuclide transport of decay chain of arbitrary length in the single planar fractured rock media in the vicinity of the radioactive waste repository is modeled using a continuous time Markov process. While most of analytical solutions for nuclide transport of decay chain deal with the limited length of decay chain, do not consider the case of having rock matrix diffusion, and have very complicated solution form, the present model offers rather a simplified solution in the form of expectance and its variance resulted from a stochastic modeling. As another deterministic way, even numerical models of decay chain transport, in most cases, show very complicated procedure to get the solution and large discrepancy for the exact solution as opposed to the stochastic model developed in this study. To demonstrate the use of the present model and to verify the model by comparing with the deterministic model, a specific illustration was made for the transport of a chain of three member in single fractured rock medium with constant groundwater flow rate in the fracture, which ignores the rock matrix diffusion and shows good capability to model the fractured media around the repository.

  • PDF

A Numerical Model for Nuclide Migration in the Far-field of the Repository (처분장 Far-field에서의 핵종이동 수치 모델)

  • Lee, Youn-Myoung;Lee, Han-Soo;Park, Heui-Joo;Cho, Won-Jin;Han, Kyong-Won;Park, Hun-Hwee
    • Nuclear Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.267-276
    • /
    • 1989
  • A numerical model for nuclide migration through fractured rock media has been developed. Nuclide transport with groundwater in rock fissures and the diffusion of nuclides into rock matrix are considered one-dimensionally . In the safety assessment of the repository for radioactive waste, this one-dimensional model by the finite-difference scheme, which enables us not only to use more realistic boundary conditions but also to model the nonhomogeneous rock medium as the multilayered media, can be used effectively with the analytical mode. The solution by the numerical model will be verified analytically, and then extended to the double-layered rock medium transport model.

  • PDF

Nuclide Release from Penetrations in Radioactive Waste Container (방사성 폐기물 저장용기 표면의 결함으로부터 핵종유출 연구)

  • Kim, Chang-Lak
    • Nuclear Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.302-307
    • /
    • 1989
  • Nuclide release through penetrations in radioactive waste container is analyzed. Penetrations may result from corrosion or cracking and may be through the container material or through deposits of corrosion products. The analysis deals with the resultant nuclide release, but not with the way these penetrations occur. Numerical illustrations show that mass transport from multiple holes can be significant and may approach the mass transfer rate calculated from bare waste forms. Although partially-failed containers may present an important long-term barrier to release of radionuclides, numerous small holes on a container surface have the potential of bypassing the effectiveness of these barriers.

  • PDF