• Title/Summary/Keyword: nucleus system

Search Result 279, Processing Time 0.027 seconds

Tracing study for the rabbit eye ball control nerve utilizing the PRV-Ba isolated in the Korea (한국분리산 PRV-Ba를 이용한 가토 안구지배신경의 추적 연구)

  • Park, Il-kwon;Kim, Moo-kang;Shin, Kwang-soon;Lee, Kyung-youl;Song, Chi-won;Lee, Kang-iee;Hyun, Byung-hwa;Chang, Kyu-tae;Jeong, Young-gil
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.3
    • /
    • pp.463-470
    • /
    • 2000
  • Until now peudorabies virus(PRV) has been used a neurotracer, because of it's properties of retrograde & anterograde transport. But it's anterograde transfort is not perfect, so we tested the applicability of the Bartha strain of PRV(PRV-Ba) isolated from South Korea as a neurotracer in the visual system. We performed immunohistochemical study of the rabbit brain after intravitreal injection of the PRV-Ba. After given survival time(24, 48, 72, 96, 120, 144hrs), the brain was removed and processed immunohistochemical stain for PRV-Ba. The strong PRV immunoreactivity(PRV-ir) were almost oberserved contralaterally in oculomotor neurons, fro example Edinger-Westphal nucleus, trigerminal nucleus of pons and peritrigerminal zone but locus of innervating sensitive neurons. The latter were weak positive and selective. PRV-Ba immunoreactive neurons were stained strongly in nucleus compared to cytoplasm. This study suggests that PRV-Ba isolated from South Korea is also a useful neurotracer in the motor innervated system like other PRV-strain.

  • PDF

Reduced Gray Matter Volume of Auditory Cortical and Subcortical Areas in Congenitally Deaf Adolescents: A Voxel-Based Morphometric Study

  • Tae, Woo-Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Purpose: Several morphometric studies have been performed to investigate brain abnormalities in congenitally deaf people. But no report exists concerning structural brain abnormalities in congenitally deaf adolescents. We evaluated the regional volume changes in gray matter (GM) using voxel-based morphometry (VBM) in congenitally deaf adolescents. Materials and Methods: A VBM8 methodology was applied to the T1-weighted magnetic resonance imaging (MRI) scans of eight congenitally deaf adolescents (mean age, 15.6 years) and nine adolescents with normal hearing. All MRI scans were normalized to a template and then segmented, modulated, and smoothed. Smoothed GM data were tested statistically using analysis of covariance (controlled for age, gender, and intracranial cavity volume). Results: The mean values of age, gender, total volumes of GM, and total intracranial volume did not differ between the two groups. In the auditory centers, the left anterior Heschl's gyrus and both inferior colliculi showed decreased regional GM volume in the congenitally deaf adolescents. The GM volumes of the lingual gyri, nuclei accumbens, and left posterior thalamic reticular nucleus in the midbrain were also decreased. Conclusions: The results of the present study suggest that early deprivation of auditory stimulation in congenitally deaf adolescents might have caused significant underdevelopment of the auditory cortex (left Heschl's gyrus), subcortical auditory structures (inferior colliculi), auditory gain controllers (nucleus accumbens and thalamic reticular nucleus), and multisensory integration areas (inferior colliculi and lingual gyri). These defects might be related to the absence of general auditory perception, the auditory gating system of thalamocortical transmission, and failure in the maturation of the auditory-to-limbic connection and the auditorysomatosensory-visual interconnection.

Localization of Glutamate-immunoreactive Neural Elements in the Dog Basilar Pons

  • Lee, hyun-Sook
    • Animal cells and systems
    • /
    • v.1 no.2
    • /
    • pp.381-388
    • /
    • 1997
  • Glutamate is a putative excitatory neurotransmitter in the central nervous system. The present study utilizing monoclonal antibodies against fixative-modified glutamate analyzed the distribution of glutamate-immunoreactive neuronal elements in the dog basilar pons. The glutamatergic neurons were present throughout the rostrocaudal extent of the basilar pons, predominantly to the medial and ventral subdivisions. Labelled cells were relatively sparse in the midline region of the medial nucleus and most lateral area of the lateral nucleus. The majority of glutamate-immunoreactive neuronal somata in the basilar pons was multipolar-shaped, and the size was in the range of 15-25 ${\mu}$m in diameter. Glutamate-immunoreactive axons and terminals were also observed at specific regions of the basilar pons. These observations provide evidence that this excitatory neural element functions in a multisynaptic pathway involving glutamatergic afferents to the basilar pons, pontocerebellar projection neurons, and the granule cells of the cerebellar cortex.

  • PDF

Intracellular Trafficking of Transferrin-Conjugated Liposome/DNA Complexes by Confocal Microscopy

  • Lee Sang Mi;Kim Jin-Seok
    • Archives of Pharmacal Research
    • /
    • v.28 no.1
    • /
    • pp.93-99
    • /
    • 2005
  • Intracellular trafficking of transferrin-conjugated dimethyldioctadecyl-ammonium bromide liposome $(T_f-liposome)/DNA$ complexes in HeLa cells was studied using the double-labeled fluorescence technique and confocal microscopy. The size of the $T_f-liposome/DNA$ complex was about 367 nm in diameter and the zeta-potential of it at a 5:1 (w/w) ratio was almost neutral. The intracellular pathway of the $T_f-liposome/DNA$ complex, noted as green (FITC), red (rhodamine) or yellow (FITC + rhodamine) fluorescence, was elucidated from the plasma membrane to the endosome (or lysosome), and finally to the nucleus. The results of this study indicate that plasmid DNA enters into the nucleus not only as a free form but as an associated form complexed with $T_f-liposome$. More interestingly, the $T_f-liposome$ undergoes a nuclear location in the form of ordered structures. This could be a very useful piece of information in designing a safe and advanced gene delivery system.

Protein Kinase C (PKC) in Cellular Signalling System: Translocation of Six Protein Kinase C Isozymes in Human Prostate Adenocarcinoma PC-3 Cell Line (세포신호계에 있어서 Protein Kinase C: 사람의 전입선 adenocarcinoma PC-3 세포내의 여섯개의 Protein kinase C 동립효소의 translocation)

  • Park, Won-Chul;Ahn, Chang-Ho
    • The Korean Journal of Zoology
    • /
    • v.36 no.4
    • /
    • pp.439-451
    • /
    • 1993
  • Protein kinase C isozymes in a human prostate adenocarcinoma PC-3 cell line were characterized. Immunoreactive bands and immunocytochemical stains were obsenred in PC-3 cells with antibodies raised against protein kinase C ${\alpha}$, ${\beta}$, ${\gamma}$, $\delta$, $\varepsilon$, and ζ types, respectively. Protein kinase C ${\alpha}$ corresponded to a immunoreactive band at a molecular weight of 80,000-dalton, whereas molecular weights of other immunoreactive isozvmes of protein kinase C were detected at 68,000-dalton. Protein kinHse C $\delta$ and ζ antibodies detected additional bands at 55,000-dalton and 80,000-dalton, respectively Immunocvtochemical study confirmed the results of the immunoblotting experiments qualitatively: all six protein kinase C isozymes were detected in the cytoplasm of PC-3 cells. Translocation of protein kinase C in PC-3 cells were also examined with phorbol 12-myristate 13-acetate (PMA), bryostatin 2, diolein, and 1-oleoyl-2-acetyl glycerol (OAG). Differential reactions of protein kinase C isozvmes to these activators were obsenred. When PC-3 cells were treated with 10mM bryostatin 2, protein kinase C isozyme u was translocated into the nucleus, whereas s type was translocated into the plasma membrane and the nucleus. Protein kinase C ${\alpha}$ and ζ types were translocated into the nucleus following the treatment with 101M diolein, whereas protein kinase C ${\alpha}$, ${\beta}$, ${\gamma}$, and $\varepsilon$ types were translocated into the nucleus by the treatment with 10mM OAG. Protein kinase C ${\alpha}$ and $\varepsilon$ types were translocated into the nucleus in the presence of 100nM PMA. Protein kinase C $\delta$ type was translocated to the nuclear membrane by these activators, however, only PMA-induced translocation was inhibited by protein kinase C inhibitor, 1-(5-isoquinolinesulfonyll-2-methvlpiperazine dihvdrochloride (H7) . H7 inhibited translocation of protein kinase C ${\alpha}$ type induced by PMA, ${\beta}$ type by OAG and s type by PMA and OAG, whereas it did not affect translocations induced by bryostatin and diolein, respectively. These results suggest that there exist six isoformes of protein kinase C (${\alpha}$, ${\beta}$, ${\gamma}$, $\delta$, $\varepsilon$ and ζ types) in PC-3 cells and that each of these isozvmes distinctivelv reacts to bryostatin, diolein, OAG and PMA, in part due to an altered molecular size and conceivably discrete binding site(s).

  • PDF

Inhibitory Action of Cortex Phellodendris on Nicotine-induced Behavioral Sensitization (황백의 니코틴의 활성 억제에 미치는 효과)

  • Lee Bom Bi;Chae Yun Byung;Kwon Young Kyu;Yang Cae Ha;Kim Mi Ryo;Kim Kwang Jung;Hahm Dae Hyun;Lee Hye Jeong;Shim In Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.3
    • /
    • pp.767-773
    • /
    • 2004
  • Substantial evidence suggests that repeated injections of nicotine produce increase in locomotor activity and expression of the immediate-early gene, c-fos in the dopaminergic target areas. Herbal medicine as a therapeutic intervention has been widely used for the treatment of mental dysfunction. Many studies have shown that Cortex Phellodendris (CP) can affect the biochemical balance in the central nervous system. In order to investigate whether CP have an influence on their nicotine-induced behavioral sensitization, we examined the effect of CP on nicotine-induced locomotor activity and c-Fos expression in the striatum and nucleus accumbens utilizing the Fos-like immunohistochemistry (FLI). Male SD rats received CP (200㎎/㎏, i.p.) 30 min before repeated daily injections of nicotine (0.4㎎/㎏, s.c.) for 7 days. Rats were followed withdrawal for 3 days and one challenge for 1 day. System challenge with nicotine produced a much larger increase in locomotor activity and accumbal FLI. Pretreatment with CP significanly inhibited nicotine-induced locomotor activity and FLI in the striuatum and nucleus accumbens. These results demonstrated that reduction in locomotor activity by CP may be reflected by reduction of dopamine release and postsynaptic neuronal activity in the striatum and nucleus accumbens. Our results suggest that CP may have therapeutic effect on nicotine addiction. Supported by a fund (99-PJ9-PG1-002-0004).

Nitric Oxide (NO) Inhibites the Neuronal Activities in the Rat Nucleus Tractus Solitarius

  • Kim, Mi-Won;Park, Mun-Sung;Ryu, Sun-Youl;Jung, Ji-Yeon;Kim, Sun-Hun;Kim, Min-Seok;Kim, Won-Jae;Jeong, Yeon Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.1
    • /
    • pp.7-15
    • /
    • 2004
  • Nitric oxide (NO) system has been implicated in a wide range of physiological functions in the nervous system. However, the role of NO in regulating the neural activity in the gustatory zone of nucleus tractus solitarius (NTS) has not been established. The present study was aimed to investigate the role of NO in the gustatory NTS neurons. Sprague-Dawley rats, weighing about 50 g, were used. Whole cell patch recording and immunohistochemistry were done to determine the electrophysiological characteristics of the rostral gustatory nucleus of the tractus solitaries and distribution of NO synthases (NOS). Neuronal NOS (nNOS) immunoreactivity was strongly detected along the solitary tract extending from rostral to caudal medulla. Resting membrane potentials of NTS neurons were $-49.2{\pm}2\;mV$ and action potential amplitudes were $68.5{\pm}2\;mV$ with a mean duration measured at half amplitude of $1.7{\pm}0.3\;ms$. Input resistance, determined from the response to a 150 ms, -100 pA hyperpolarizing current pulse, was $385{\pm}15\;M{\Omega}$, Superfusion of SNAP or SNP, NO donors, produced either hyperpolarization (68%), depolarization (5%), or no effect (27%). The hyperpolarization was mostly accompanied by a decrease in input resistance. The hyperpolarization caused by SNAP or SNP increased the time to initiate the first action potential, and decreased the number of action potentials elicited by current injection. SNP or SNAP also markedly decreased the number of firing neural discharges of the spontaneous NTS neural activity under zero current. Superfusion of L-NAME, a NOS inhibitor, slightly depolarized the membrane potential and increased the firing rate of NTS neurons induced by current injection. ODQ, a soluble guanylate cyclase inhibitor, ameliorated the SNAP-induced changes in membrane potential, input resistance and firing rates. 8-Br-cGMP, a non-degradable cell-permeable cGMP, hyperpolarized the membrane potential and decreased the number of action potentials. It is suggested that NO in the gustatory NTS has an inhibitory role on the neural activity of NTS through activating soluble guanylate cyclase.

Relationships of Cocaine and Amphetamine Regulated Transcript with Serotonin in the Brain

  • Park, S. H.;B. S. Kwon;J. R. Chun;J. W. Jahng;Lee, H. T.;K. S. Chung
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.51-51
    • /
    • 2001
  • Cocaine and amphetamine-regulated transcript (CART) is a satiety factor that is regulated by leptin. It was reported that the mice intracerebroventricularly injected with CART showed behavioral changes resembled with the typical behavioral alterations found in the mice carrying disorders in the brain serotonergic (5-HT) system. Hence, this study was conducted to find out the relationships between CART and 5-HT. We first examined the mRNA levels of CART after the injections of para-chlorophenylalanine (pCPA, 300 mg/kg i.p., single injection or daily for three consecutive days) in the rat brains by in situ hybridization using the mouse CART cDNA probe cloned in our laboratory. Systemic administrations of pCPA, a potent inhibitor of tryptophan hydroxylase, the rate limiting enzyme of 5-HT biosynthesis, acutely depletes the brain 5-HT transporter (5-HTT) in the dorsal raphe nucleus (DRN), which reuptakes terminal 5-HT. Results indicated that the mRNA level of CART significantly decreased in the arcuate nucleus, paraventricular nucleus, and lateral hypothalamic nucleus by three days of daily injection with pCPA with no noticeable change detected 24 hrs after the single injection. The message levels of 5-HTT in DRN decreased in both single and three days of injections. Secondly, to investigate whether CART affect to 5-HT, mouse genomic CART gene, which is consist of 3 exons and 2 introns and mouse neurofilament light (NF-L) chain promoter were cloned. Then, we constructed neuron specific expression vector, which was transfected into HeLa cell using lipid-mediated transfection system. Expression of GFP and CART linked to NF-L-chain promoter in the transfected HeLa cell were detected by using fluorescent microscope and RT-PCR. These results confirmed normal expression of DNA constructs in vitro. Then, to increase brain specific expression of CART in vivo transgenic mice carrying CART gene controlled the deleted NF-L-chain promoter were generated by the DNA microinjection into pronuclei of fertilized embryos. Transgenic mice were detected by Southern blot. Further study is necessary to examine CART expression and 5-HTT in these transgenic mice. Therefore, these results suggest that there maybe a positive molecular correlation between CART and 5-HT in responding to the stimuli.

  • PDF

Effect of Pretreatment of (-)-3-PPP on the Haloperidol-Induced Extracellular Dopamine Concentrations in the Nucleus Accumbens of Rats (백서(白鼠) 중격측좌핵에서 Haloperidol로 유발된 세포외 도파민 농도 변화에 대한 (-)-3-PPP 전처치 효과)

  • Chung, Young-Chul;Eun, Hong-Bae;Hwang, Ik-Keun;Park, Tae-Won
    • Korean Journal of Biological Psychiatry
    • /
    • v.8 no.1
    • /
    • pp.79-84
    • /
    • 2001
  • Objectives : To investigate the effects of (-)-3-PPP(0.5, 2, and 10mg/kg, s.c.) and haloperidol(0.1, 0.5, and 2mg/kg, s.c.) on the extracellular dopamine concentrations, and the effect of pretreatment with (-)-3-PPP(2mg/kg) on the haloperidol(2mg/kg)-induced extracellular dopamine concentrations in the nucleus accumbens(NAS) of free moving rats. Methods : Dopamine levels in dialysate were determined with high pressure liquid chromatography(HPLC) with electrochemical detection(ECD). Results : (1)(-)-3-PPP had dual actions depending on the doses: at 2mg/kg, it decreased and at 10mg/kg, increased extracellular dopamine concentrations ; (2) haloperidol at all doses increased dopamine levels with higher dose having a greater increase; and (3) pretreatment of (-)-3-PPP reduced the increase in dopamine levels elicited by acute treatment with haloperidol. Conclusions : These findings suggest that pretreatment of (-)-3-PPP in low dose could accelerate the onset of therapeutic effect of haloperidol by diminishing the haloperidol-induced dopamine release in the limbic system.

  • PDF

Effects of Cholecystokinin Octapeptide on Neuronal Activities in the Rat Nucleus Tractus Solitarius

  • Rhim, Hye-Whon;Park, Chan-Woong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.4
    • /
    • pp.275-281
    • /
    • 2000
  • Cholecystokinin (CCK) is a gastrointestinal hormone which plays an important role in satiety and gastric motility. It is also widely distributed throughout the central nervous system, where it appears to be involved in the central control of anxiety, feeding behavior and nociception. Two distinct CCK receptor types, $CCK_A$ and $CCK_B,$ have been found in the brain. Both CCK receptors coexist in the rat nucleus tractus solitarius (NTS), which is the primary center for the coordination of peripheral and central activities related to gastrointestinal, cardiovascular and respiratory functions. In order to study ionic actions of CCK on each type of receptor, we investigated the effects of CCK-8S on neurons located in the NTS of the rat using whole-cell patch-clamp recordings in brainstem slices. Application of CCK-8S, under current clamp, produced a membrane depolarization accompanied by action potential firing. This CCK-evoked excitation was dose-dependent $(10\;nM{\sim}10\;{\mu}M)$ and observed in more than 60% of NTS neurons. Under voltage clamp conditions, CCK-8S induced an inward current with a notably increased spontaneous excitatory synaptic activity. However, CCK-8S did not significantly change the amplitude of pharmacologically isolated and evoked EPSP(C)s. Using selective $CCK_A$ and $CCK_B$ receptor antagonists, we observed two different effects of CCK-8S, which suggest $CCK_A$ receptor-mediated inhibitory and $CCK_B$ receptor-mediated excitatory effects in the NTS. These results may help to explain the ability of CCK to modulate gastrointestinal and other reflex systems in the NTS.

  • PDF