• Title/Summary/Keyword: nucleation seed

Search Result 44, Processing Time 0.029 seconds

Nucleation and Growth of Diamond in High Pressure

  • Choi, Jun-Youp;Park, Jong-Ku;Kang, Suk-Joong L.;Kwang, Yong-Eun
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.221-225
    • /
    • 1996
  • In diamond synthesis by metal film growth method under high pressure and high temperature, the nucleation and growth of diamond was observed dependent on the carbon source variation from graphite powder to the heat treated powders of lamp black carbon. At the low driving force condition near equilibrium pressure and temperature line, nucleation of diamond did not occur but growth of seed diamond appeared in the synthesis from lamp black carbon while both nucleation and growth of diamond took place in the synthesis from graphite. Growth morphology change of diamond occurred from cubo-octahedron to octahedron in the synthesis from graphite but very irregular growth of seed diamond occurred in the synthesis from lamp block carbon. Lamp black carbon transformed to recrystallized graphite first and very nucleation of diamond was observed on the recrystallized graphite surface. Growth morphology of diamond on the recrystallized graphite was clear cubo-octahedron even at higher pressure departure condition from equilibrium pressure and temperature line.

  • PDF

Molecular Dynamics Simulation of Cluster-Seed Affects on Heterogeneous Nucleation (분자동력학을 이용한 클러스터핵 주변의 이종핵형성 모사)

  • Suh, Dong-Uk;Jung, Seung-Chai;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1885-1890
    • /
    • 2008
  • 3-D heterogeneous nucleation was simulated by classical molecular dynamics (MD), where the Lennard-Jones (LJ) gas and solid cluster-seed molecules have argon and aluminum properties, respectively. There are three shapes of cluster-seeds, cube, rod, and sphere, and three classes of masses and the simulation took place under nine supersaturation ratios, making a total of 81 calculations. Results show that the dimension of the cluster-seed highly affects the rates of cluster development. In order to analyze heterogeneous nucleation above and below the critical supersaturation ratio, growth rate and liquefaction rate were separately defined to supplement the investigation. Design of experiments (DOE) was used for analysis which displayed that the shape and mass of the cluster-seed are prominent for the growth rate, while the supersaturation ratio is most significant followed by the mass for liquefaction rate. The significance of the supersaturation ratio for overall liquefaction suggests that thermal diffusion is more dominant than mass interactions for this system.

  • PDF

Effect of hydrogenation surface modification on dispersion and nucleation density of nanodiamond seed particle (수소화 표면 개질이 나노다이아몬드 seed 입자의 분산 및 핵형성 밀도에 미치는 영향)

  • Choi, Byoung Su;Jeon, Hee Sung;Um, Ji Hun;Hwang, Sungu;Kim, Jin Kon;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.239-244
    • /
    • 2019
  • Two hydrogenation surface modifications, namely hydrogen atmosphere heat treatment and hydrogen plasma treatment, were found to lead to improved dispersion of nanodiamond (ND) seed particles and enhanced nucleation density for deposition of smooth ultrananocrystalline diamond (UNCD) film. After hydrogenation, the C-O and O-H surface functionalities on the surface of nanodiamond particles were converted to the C-H surface functionalities, and the Zeta potential was increased. As the degree of dispersion was improved, the size of nanodiamond aggregates decreased significantly and nucleation density increased dramatically. After hydrogen heat treatment at 600℃, average size of ND particles was greatly reduced from 3.5 ㎛ to 34.5 nm and a very high nucleation of ~3.9 × 1011 nuclei/㎠ was obtained for the seeded Si surface.

Enhanced nucleation density by heat treatment of nanodiamond seed particles (나노다이아몬드 seed 입자의 열처리에 의한 핵형성 밀도 향상)

  • Park, Jong Cheon;Jeong, Ok Geun;Son, Bit Na;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.291-295
    • /
    • 2013
  • Surface chemical modification via air and hydrogen heat treatment was found to relieve the aggregation of nanodiamond (ND) seed particles and lead to a significantly enhanced nucleation density for ultrananocrystalline diamond (UNCD) film growth. After heat treatment in air and hydrogen, modification of surface functionalities and increase in the zeta potential were observed. Mean size of the ND aggregates was also dramatically reduced from ${\sim}2{\mu}m$ to ~55 nm. Si surface seeded with ND particles heat-treated at $600^{\circ}C$ in hydrogen produced a much higher nucleation density of ${\sim}2.7{\times}10^{11}cm^{-2}$ compared to untreated ND seeds.

Abnormal Grain Growth Behavior of $BaTiO_3$ Ceramics with Addition of Seed Grains (Seed 입자 첨가에 따른 $BaTiO_3$ 요업체의 비정상 입성장거동)

  • 이태헌;김정주;김남경;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.5
    • /
    • pp.587-593
    • /
    • 1995
  • Abnomal grain growth behavior of BaTiO3 ceramics was investigated with addition of seed grains. It was foudn that the nucleation rate of abnormal grain was constant and growth of abnormal grain was linearly increased with sitnering time, regardless of amount of seed grains. These facts were also confirmed by fitting of the volume fraction of abnormal grain vs. sintering time using Avrami type equation (n=4). It was suggested that seed grains did not change the nucleation rate or growth mechanism of abnormal grain but increase the number of abnormal grains at initial stage of sintering and then it led to fine microstructure of BaTiO3 ceramics.

  • PDF

Effects of Plasma Pretreatment of the Cu Seed Layer on Cu Electroplating (Cu seed layer 표면의 플라즈마 전처리가 Cu 전기도금 공정에 미치는 효과에 관한 연구)

  • O, Jun-Hwan;Lee, Seong-Uk;Lee, Jong-Mu
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.802-809
    • /
    • 2001
  • Electroplating is an attractive alternative deposition method for copper with the need for a conformal and conductive seed layer In addition, the Cu seed layer should be highly pure so as not to compromise the effective resistivity of the filled copper interconnect structure. This seed layer requires low electrical resistivity, low levels of impurities, smooth interface, good adhesion to the barrier metal and low thickness concurrent with coherence for ensuring void-free fill. The electrical conductivity of the surface plays an important role in formation of initial Cu nuclei, Cu nucleation is much easier on the substrate with higher electrical conductivities. It is also known that the nucleation processes of Cu are very sensitive to surface condition. In this study, copper seed layers deposited by magnetron sputtering onto a tantalum nitride barrier layer were used for electroplating copper in the forward pulsed mode. Prior to electroplating a copper film, the Cu seed layer was cleaned by plasma H$_2$ and $N_2$. In the plasma treatment exposure tome was varied from 1 to 20 min and plasma power from 20 to 140W. Effects of plasma pretreatment to Cu seed/Tantalum nitride (TaN)/borophosphosilicate glass (BPSG) samples on electroplating of copper (Cu) films were investigated.

  • PDF

Crystal growing of sodium type 13X zeolite by continuous crystallization method (연속결정화 방법에 의한 13X 제올라이트 결정성장)

  • 김익진;이해진;서동남
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.4
    • /
    • pp.190-195
    • /
    • 2002
  • NaX zeolite crystals of a uniform particle size of 50 $\mu$m were grown by continuous crystallization method from seed crystals (10~20 $\mu$m) added into a 0.5~2.0 g mother liquor having a composition $3.5Na_2O : Al_2O_3: 2.1SiO_2: 1000H_2O$. In order to investigate the crystal growing by continuous method, the mother solution was supplied after 7 days, 5 days, 3 days and 1 day, respectively. The seeding resulted in an increase in the fraction of large crystals compared with unseeded batches and successfully led to an uniform NaX zeolite crystal. It was postulated that the seeding in the synthesis mixture leaded out increase of surface area for physical contact reaction and directed growth of seed crystal without the nucleation in the synthesis gel.

Coarsening Advantage of Twinned BaTiO3 Seed Particle

  • Jin, Hong-Ri;Jo, Wook;Hwang, Nong-Moon;Kim, Doh-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.9 s.280
    • /
    • pp.599-601
    • /
    • 2005
  • The coarsening process of two different $BaTiO_3$ single crystal seeds, one with a (111) double twin and the other without it, was investigated. Due to the presence of Twin Plane Reentrant Edge (TPRE), the coarsening rate of the twinned seed crystal was significantly higher than that without a twin. For the coarsening by the 2-dimensional nucleation and lateral growth, the energy barrier for nucleation at the TPRE was analyzed to be about a half compared with that at the terrace planes.

The Effect of Seed on Top-seeded Melt-growth (TSMG) Processing of a RE-123 Superconductor

  • O, Yong-Taeg;Sung, Tae-Hyun;Jeong, Nyeon-Ho;Kim, Chan-Joong;Shin, Dong-Chan
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.115-118
    • /
    • 2007
  • This study investigated the effects of different kinds of seed crystals with miscut angles and pretreatment on the characteristics of a RE-123 superconductor processed by a top-seeded melt-growth (TSMG) method. When the seed crystal was heat-treated in an oxygen atmosphere, the surface structure was cleaned removing hydroxide. When the seed crystal had a miscut angle, in addition, the surface structure showed a well defined hill-and-valley structure after heat-treatment. A better microstructure, with a well-distributed small RE-123 phase, was obtained using a high miscut angle after heat-treatment in an oxygen atmosphere. As a result of the microstructure improvement, the magnetic characteristics also improved. The experimental result can be explained by reduction of nucleation activation energy.

  • PDF