• Title/Summary/Keyword: nucleation mechanism

Search Result 150, Processing Time 0.029 seconds

Mechanism of intragranular ferrite formation in heat-affected zone of titanium killed steel

  • Terasaki, Hidenori;Komizo, Yu-Ichi
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.197-201
    • /
    • 2009
  • A lot of work is carried out concerning to acicular ferrite formation in the weld metal of high strength and low-alloy steel. Those results are suggesting that oxides that contain titanium elements provides nucleation site of intragranular ferrite, referred as acicular ferrite. Thus, when intragranular ferrite is expected to form in heat-affected zone, oxide containing titanium element should be formed in the steel. However, normal steel is deoxidized by using aluminum element (Al-killed steel) with little oxygen content. It means almost oxygen is deoxidized with aluminum elements. In the present work, in order to form the acicular ferrite in the heat affected zone, with the same concept in the case of weld metal, the steel deoxidized with titanium element (titanium killed-steel) is prepared and the acicular ferrite formation is observed in detail by using laser-conforcal microscopy technique. The confocal technique makes it possible that the morphological change along the phase transformation from austenite to ferrite is in-situ tracked. Thus, the inclusion that stimulated the ferrite nucleation could be directly selected from the observed images, in the HAZ of the Ti-killed steel. The chemical composition of the selected inclusion is analyzed and the nucleation potential is discussed by changing the nucleation site with boron element. The potency for the ferrite nucleation is summarized and the existence of effective and ineffective manganese sulfide for nucleation is made clear.

  • PDF

Bubble Formation in Liquid Helium under Negative Pressure by Quantum Tunneling near Absolute Zero Temperature (절대 0도 부근에서 양자터널링에 의한 헬리움(He)액체의 부압하에서의 기포형성)

  • Kwak, H.;Jung, J.;Hong, J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.354-359
    • /
    • 2001
  • As the temperature of liquid under negative pressure approaches the absolute zero, the nucleation process due to thermal fluctuations hardly occurs. Instead of this mechanism, quantum fluctuations may lead the formation of nucleus for new phase in metastable state. In this study, the thermal as well as quantum nucleation bubble in liquid helium under negative pressure was investigated theoretically. The energy barrier against nucleation was estimated by molecular interaction due to the Londom dispersion force. It is shown that the phase transition from liquid to vapor in is possible due to the quantum tunneling below 0.2 K for Helium-4 and 0.1 K for Helium-3, at negative pressures close to the ideal tensile strength at which every liquid molecules become bubbles simultaneously.

  • PDF

A Physically Based Dynamic Recrystallization Model for Predicting High Temperature Flow Stress (열간 유동응력 예측을 위한 물리식 기반 동적 재결정 모델)

  • Lee, H.W.;Kang, S.H.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.450-455
    • /
    • 2013
  • In the current study, a new dynamic recrystallization model for predicting high temperature flow stress is developed based on a physical model and the mean field theory. In the model, the grain aggregate is assumed as a representative volume element to describe dynamic recrystallization. The flow stress and microstructure during dynamic recrystallization were calculated using three sub-models for work hardening, for nucleation and for growth. In the case of work hardening, a single parameter dislocation density model was used to calculate change of dislocation density and stress in the grains. For modeling nucleation, the nucleation criterion developed was based on the grain boundary bulge mechanism and a constant nucleation rate was assumed. Conventional rate theory was used for describing growth. The flow stress behavior of pure copper was investigated using the model and compared with experimental findings. Simulated results by cellular automata were used for validating the model.

Superconformal gap-filling of nano trenches by metalorganic chemical vapor deposition (MOCVD) with hydrogen plasma treatment

  • Moon, H.K.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.246-246
    • /
    • 2010
  • As the trench width in the interconnect technology decreases down to nano-scale below 50 nm, superconformal gap-filling process of Cu becomes very critical for Cu interconnect. Obtaining superconfomral gap-filling of Cu in the nano-scale trench or via hole using MOCVD is essential to control nucleation and growth of Cu. Therefore, nucleation of Cu must be suppressed near the entrance surface of the trench while Cu layer nucleates and grows at the bottom of the trench. In this study, suppression of Cu nucleation was achieved by treating the Ru barrier metal surface with capacitively coupled hydrogen plasma. Effect of hydrogen plasma pretreatment on Cu nucleation was investigated during MOCVD on atomic-layer deposited (ALD)-Ru barrier surface. It was found that the nucleation and growth of Cu was affected by hydrogen plasma treatment condition. In particular, as the plasma pretreatment time and electrode power increased, Cu nucleation was inhibited. Experimental data suggests that hydrogen atoms from the plasma was implanted onto the Ru surface, which resulted in suppression of Cu nucleation owing to prevention of adsorption of Cu precursor molecules. Due to the hydrogen plasma treatment of the trench on Ru barrier surface, the suppression of Cu nucleation near the entrance of the trenches was achieved and then led to the superconformal gap filling of the nano-scale trenches. In the case for without hydrogen plasma treatments, however, over-grown Cu covered the whole entrance of nano-scale trenches. Detailed mechanism of nucleation suppression and resulting in nano-scale superconformal gap-filling of Cu will be discussed in detail.

  • PDF

Thermal Degradation Kinetics of Antimicrobial Agent, Poly(hexamethylene guanidine) Phosphate

  • Lee, Sang-Mook;Jin, Byung-Suk;Lee, Jae-Wook
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.491-498
    • /
    • 2006
  • The thermal degradation of poly(hexamethylene guanidine) phosphate (PHMG) was studied by dynamic thermogravimetric analysis (TGA) and pyrolysis-GC/MS (p-GC). Thermal degradation of PHMG occurs in three different processes, such as dephosphorylation, sublimation/vaporization of amine compounds and decomposition/ recombination of hydrocarbon residues. The kinetic parameters of each stage were calculated from the Kissinger, Friedman and Flynn-Wall-Ozawa methods. The Chang method was also used for comparison study. To investigate the degradation mechanisms of the three different stages, the Coats-Redfern and the Phadnis-Deshpande methods were employed. The probable degradation mechanism for the first stage was a nucleation and growth mechanism, $A_n$ type. However, a power law and a diffusion mechanism, $D_n$ type, were operated for the second degradation stage, whereas a nucleation and growth mechanism, $A_n$ type, were operated again for the third degradation stage of PHMG. The theoretical weight loss against temperature curves, calculated by the estimated kinetic parameters, well fit the experimental data, thereby confirming the validity of the analysis method used in this work. The life-time predicted from the kinetic equation is a valuable guide for the thermal processing of PHMG.

An advanced single-particle model for C3S hydration - validating the statistical independence of model parameters

  • Biernacki, Joseph J.;Gottapu, Manohar
    • Computers and Concrete
    • /
    • v.15 no.6
    • /
    • pp.989-999
    • /
    • 2015
  • An advanced continuum-based multi-physical single particle model was recently introduce for the hydration of tricalcium silicate ($C_3S$). In this model, the dissolution and the precipitation events are modeled as two different yet simultaneous chemical reactions. Product precipitation involves a nucleation and growth mechanism wherein nucleation is assumed to happen only at the surface of the unreacted core and product growth is characterized via a two-step densification mechanism having rapid growth of a low density initial product followed by slow densification. Although this modeling strategy has been shown to nicely mimic all stages of $C_3S$ hydration - dissolution, dormancy (induction), the onset of rapid hydration, the transition to slow hydration and prolonged reaction - the major criticism is that many adjustable parameters are required. If formulated correctly, however, the model parameters are shown here to be statistically independent and significant.

Surface Structure and X-ray Topography of $NdAl_3(BO_3)_4$ Single Crystals Grown from High Temperature Solution of $BaO-B_2O_3-Nd_2O_3-Al_2O_3$ System ($BaO-B_2O_3-Nd_2O_3-Al_2O_3$계 고온 용액으로부터 성장된 $NdAl_3(BO_3)_4$ 단결정의 표면구조와 X-선 Topography)

  • 정선태;강진기;김정환;정수진
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.3
    • /
    • pp.249-256
    • /
    • 1994
  • By surface structure and X-ray topographic observation, growth mechanism of NAB single crystal grown by TSSG technique using a BaB4O7 flux was studied. Surface structure of grown crystals were investigated by optical microscope. Growth history and crystal defects included within grown crystal were investigated using X-ray topography. The {001} faces were grown by 2-D nucleation growth. As decreasing cooling rate, growth mechanism of {111} and {11} was changed from 2-D nucleation growth to the growth by screw dislocation. Only surface striations developed parallel to a-axis were observed on {010} faces. Growth sector of NAB crystals were divided into {001}, {111}, {010}, {021}, {11}. The inclusion which was usually trapped between {001} faces was investigated.

  • PDF

A New Mechanish of Bright Plating on the Ground of Analysis of Rate Nucleafion and Growth (결정의 발생속도식과 송장속도식의 해석에 지초한 광택니켈도금의 새로운 메카니즘)

  • 박병각;송재설;김창진
    • Journal of the Korean institute of surface engineering
    • /
    • v.21 no.2
    • /
    • pp.76-82
    • /
    • 1988
  • The bright nickel electroplatings were carried out the Watt bath containg a solobel saccharin as class I brightner and para substituted benzaldehydes as class II one. Extended Huckel MO calculation was done and polarization was measured to examine between $\pi$-electron density and the brightness. The correlation is also investigated between $\pi$-electron density of oxygen atom of aldehyde group and slope of polarization curve. As a result of the analysis of rate equation of nucleation, the surface energy of the deposited particle was obtained from the slope of the plot of $\ell$nI against 1/η2, and also the reat equation of nucleation found to influnced on the leveling on the basis of adsorption theory. We have proposed the general electroplating mechanism that is applied other to all other electroplating but nickel one. The above elucidated mechanism can be extended can be extended to the all electroplating other than bright nickel electroplating.

  • PDF

Numerical Analysis for the Soot Formation Processes in Acetylene-Air Nonpremixed Turbulent Jet Flame (아세틸렌/공기 비예혼합 난류 제트화염의 Soot 생성에 대한 수치해석)

  • 김후중;김용모;윤명원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.80-89
    • /
    • 2002
  • The flame structure and soot formation in Acetylene-Air nonpremixed jet flame are numerically analyzed. We employed two variable approach to investigate the soot formation and oxidation processes. The present soot reaction mechanism involves nucleation, surface growth, particle coagulation, and oxidation steps. The gas phase chemistry and the soot nucleation, surface growth reactions are coupled by assuming that the nucleation and soot mass growth has the certain relationship with the concentration of pyrene and acetylene. We also employed laminar flamelet model to calculate the thermo-chemical properties and the proper soot source terms from the information of detailed chemical kinetic model. The numerical and physical model used in this study successfully predict the essential features of the combustion processes and soot formation characteristics in the reaction flow field.

Nucleation, Growth and Properties of $sp^3$ Carbon Films Prepared by Direct $C^-$ Ion Beam Deposition

  • Kim, Seong I.
    • The Korean Journal of Ceramics
    • /
    • v.3 no.3
    • /
    • pp.173-176
    • /
    • 1997
  • Direct metal ion beam deposition is considered to be a whole new thin film deposition technique. Unlike other conventional thin film deposition processes, the individual deposition particles carry its own ion beam energies which are directly coupled for the formation of this films. Due to the nature of ion beams, the energies can be controlled precisely and eventually can be tuned for optimizing the process. SKION's negative C- ion beam source is used to investigate the initial nucleation mechanism and growth. Strong C- ion beam energy dependence has been observed. Complete phase control of sp3 and sp3, control of the C/SiC/Si interface layer, control of crystalline and amorphous mode growth, and optimization of the physical properties for corresponding applications can be achieved.

  • PDF