Nucleate boiling heat transfer for refrigerants, R113, and R113+wt4% ethanol mixture, an azeotropic mixture under electric field was investigated experimentally in a single-tube shell/ tube heat exchanger. A special electrode configuration which provides a more uniform electric field that produces more higher voltage limit against the dielectric breakdown was used in this study. Experimental study has revealed that the electrical charge relaxation time is an important parameter for the boiling heat transfer enhancement under electric field. Up to 1210% enhancement of boiling heat transfer was obtained for R113+wt4% ethanol mixture which has the electrical charge relaxation time of 0.0053 sec whereas only 280% enhancement obtained for R113 which has relaxation time of 0.97 sec. With artificially machined boiling surface, more enhancement in the heat transfer coefficient in the azeotropic mixture was obtained.
Journal of Advanced Marine Engineering and Technology
/
v.39
no.7
/
pp.702-708
/
2015
Two-phase flow boiling experiments were conducted using FC-72 as the working fluid. The micro-channels consisted of 15 channels with a depth of 0.2 mm, width of 0.45 mm, and length of 60 mm. Tests were performed over a mass flux range of $200-400kg/m^2s$, heat flux range of $5.6-49.0kW/m^2$, and vapor quality range of 0.02-0.93. Based on the results of the experiment, the heat transfer mechanism by nucleate boiling was dominant at a lower vapor quality (x<0.2), whereas that in the region of a vapor quality greater than 0.2 was complexly influenced by nucleate boiling and forced convection boiling. The nucleate boiling and forced convection boiling could be expressed as functions of the boiling number and convection number, respectively. In addition, the heat transfer coefficient obtained by the experiment was compared with the heat transfer coefficient by the existing correlation.
Journal of Advanced Marine Engineering and Technology
/
v.13
no.4
/
pp.40-53
/
1989
Boiling heat transfer phenomena is widely applied to BWR and electrical heating system because of its high heat transfer coefficient. In these systems, steady state heat transfer is dependent on nucleate boiling. When the heat generating rate is sharply increased or the cooling capacity of coolant is sharply decreased, sharp wall temperature rise is occurred under the critical heat flux(CHF) condition. This paper presents the simple wall temperature fluctuation model of transition mechanism in the repeating process of overheating and quenching, when coalescent bubble passes relatively slowly on the wall and simultaneously the transition from nucleate boiling to film boiling is carried at especially onset of the CHF state. The values calculated by the present model are resulted comparatively good with the measured.
In this study, boiling heat transfer coefficients(HTCs) and critical heat flux(CHF) are measured on a smooth square flat copper heater in a pool of pure water with and without carbon nano tubes(CNTs) dispersed at $60^{\circ}C$. Tested aqueous nanofluids are prepared using multi-walled CNTs whose volume concentrations are 0.0001, 0.001, 0.01, and 0.05%. For dispersion of CNTs, polyvinyl pyrrolidone(PVP) is used in distilled water. Pool boiling HTCs are taken from $10kW/m^2$ to critical heat flux for all nanofluids. Test results show that the pool boiling HTCs of the nanofluids are lower than those of pure water in entire nucleate boiling regime. On the other hand, critical heat flux is enhanced greatly showing up to 200% increase at volume concentration of 0.001% CNTs as compared to that of pure water. This is related to the change of surface characteristics by the deposition of CNTs. This deposition makes a thin CNT layer on the surface and the active nucleation sites of heat transfer surface are decreased due to this layer. The thin layer acts as the thermal resistance and also decreases the bubble generation rate resulting in a decrease in pool boiling HTCs. The same layer, however, maintains the nucleate boiling even at very high heat fluxes and reduces the formation of large vapor canopy at near CHF resulting in a significant increase in CHF.
Nucleate pool boiling heat transfer coefficient (HTCs) were measured with one nonazeotropic mixture of propane/isobutane and two azeotropic mixtures of HFC134a/isobutane and propane/HFC 134a. All data were taken at the liquid pool temperature of $7^{\circ}C$ on a horizontal plain tube of 19.0mm outside diameter with heat fluxes of $10\;kW/m^2\;to\;80kW/m^2$ with an interval of $10\;kW/m^2$ in the decreasing order of heat flux. The measurements were made through electrical heating by a cartridge heater. The nonazeotropic mixture of propane/isobutane showed a reduction of HTCs as much as 41% from the ideal values. The azeotropic mixtures of HFC134a/isobutane and propane/HFC134a showed a reduction of HTCs as much as 44% from the ideal values at compositions other than azeotropic compositions. At azeotropic compositions, however, the HTCs were even higher than the ideal values due to the increase in the vapor pressure. For all mixtures, the reduction in heat transfer was greater with larger gliding temperature difference. Stephan and Korner's and lung et al's correlations predicted the HTCs of mixtures with a mean deviation of 11%. The largest mean deviation occurred at the azeotropic compositions of HFC134a/isobutane and propane/HFC134a.
The bubble motion during nucleate boiling in a microchannel is investigated numerically. The liquid-vapor interface is tracked by a level set method which is modified to include the effects of phase change at the interface and contact angle at the wall. The computations are made for various channel sizes, liquid flow rates, and contact angles. Based on the numerical results, the bubble growth pattern and its effect on the flow and heat transfer are discussed.
An experimental study was performed to evaluate the effects of surface coating and an enhanced insulation structure on the downward facing boiling process and the critical heat flux on the outer surface of a hemispherical vessel. Steady-state boiling tests were conducted in the Subscale Boundary Layer Boiling (SBLB) facility using an enhanced vessel/insulation design for the cases with and without vessel coatings. Based on the boiling data, CHF correlations were obtained for both plain and coated vessels. It was found that the nucleate boiling rates and the local CHF limits for the case with micro-porous layer coating were consistently higher than those values for a plain vessel at the same angular location. The enhancement in the local CHF limits and nucleate boiling rates was mainly due to the micro-porous layer coating that increased the local liquid supply rate toward the vaporization sites on the vessel surface. For the case with thermal insulation, the local CHF limit tended to increase from the bottom center at first, then decrease toward the minimum gap location, and finally increase toward the equator. This non-monotonic behavior, which differed significantly from the case without thermal insulation, was evidently due to the local variation of the two-phase motions in the annular channel between the test vessel and the insulation structure.
Phenomenon of droplet impingement with high temperature wall needs to be investigated because atomization process of droplet and cooling process of the wall by the impingement are very important in industry, thus studies concerned with temperature of piston wall have been conducted in spray characteristics analysis of diesel engine. Hence, in this study, we defined $DT_{sat}(=T_w-T_{sat})$ superheat degree of the wall by difference between $T_w$ considering surface temperature of piston in the actual engine and $T_{sat}$ saturation temperature of the fuel and then investigated spray behavior of wall impinging with variance of the boiling process. In this study, in order to analyze wall impingement of droplet in accordance with difference of boiling condition, calculational conditions were set as $DT_{sat}=40K$(nucleate boiling), $DT_{sat}=140K$(transition boiling), and $DT_{sat}=240K$(film boiling). As a result, it can be found that fuel vapor increases and droplet mass decreases in the order of the nucleate boiling, transition boiling, and film boiling.
Direct immersion cooling has been considered as one of the promising methods to cool high power density chips. A fluorocarbon liquid such as FC-72, which is chemically and electrically compatible with microelectronic components, is known to be a proper coolant for direct immersion cooling. However, boiling in this dielectric fluid is characterized by its small value of the critical heat flux. In this experimental study, we tried to enhance the critical heat flux by increasing the nucleate boiling area in the heat spreader (Conductive Immersion Cooling Module). Heat nux of 2 MW/㎡ was successfully removed at the heat source temperature below 78$^{\circ}C$ in FC-72. Some modified boiling curves at high heat flux were obtained from these modules. Also, the concept of conduction path length is very important in enhancing the critical heat flux by increasing the heat spreader surface area where nucleate boiling occurs.
Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.11
no.6
/
pp.912-920
/
1999
The forced convective boiling heat transfer coefficients of R-407C were measured inside a horizontal tube 6.0mm I.D. and 4.0m long. The heat transfer coefficients increased according to an increase in heat flux at constant mass flux. Because nucleation was completely suppressed in the two-phase flow region with high quality, heat transfer coefficients in forced convective evaporation were higher than those in nucleate boiling region. Average heat transfer coefficients of R-407C were about 30 percent lower than the pure refrigerant correlation, due to mass transfer resistance at the gas-liquid interface. However, the total experimental data shows an agreement with the predicted data for ternary refrigerant mixtures with a mean deviation of 30%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.