• 제목/요약/키워드: nuclear waste management

검색결과 266건 처리시간 0.028초

중저준위 방사성폐기물 전주기 이력관리체계 구축 및 개선 (The Establishment and Improvement of Full Cycle History Management System for Low- and Intermediate-level Radioactive Waste)

  • 이진우;이준;은희철;정지영
    • 방사선산업학회지
    • /
    • 제18권1호
    • /
    • pp.95-100
    • /
    • 2024
  • To establish a radioactive waste life cycle history management system, a series of processes including waste generation, classification, packaging, storage, transportation, and disposal were reflected in the information management system. A preliminary review process was introduced to reduce the amount of radioactive waste generated and manage it efficiently. Through this, the amount of radioactive waste generated must be checked from the beginning of the research, and the generated radioactive waste must be thoroughly managed from the stage of generation to final disposal. In particular, in the case of radioactive waste data generated during nuclear facility operation and each experiment, a radioactive waste information management system must be operated to receive information from the waste generator and integrate it with processing information at the management stage. The application process for small-package containers was reflected so that information such as the generation facility of radioactive waste, generation facility, project information, types of radioactive waste, major radionuclides, etc. In the radioactive waste management process, the preceding steps are to receive waste history from the waste generators. This includes an application for a specified container with a QR label, pre-inspection, and management request. Next, the succeeding steps consist of repackaging, treatment, characterization, and evaluating the suitability of disposal, for a process to transparently manage radioactive wastes.

Determination of X-ray and gamma-ray shielding capabilities of recycled glass derived from deteriorated silica gel

  • P. Sopapan;O. Jaiboon;R. Laopaiboon;C. Yenchai;C. Sriwunkum;S. Issarapanacheewin;T. Akharawutchayanon;K. Yubonmhat
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3441-3449
    • /
    • 2023
  • We determined the radiation shielding properties for 10CaO-xPbO-(90-x) deteriorated silica gel (DSG) glass system (x = 20, 25, 30, 35, 40, and 45 mol.%). The mass attenuation coefficient (MAC) has been estimated at photon energies of 74.23, 97.12, 122, 662, 1173, and 1332 keV using a narrow beam X-ray attenuation and transmission experiment, the XCOM program, and a PHITS simulation. The obtained MAC values were applied to estimate the half value layer (HVL), mean free path (MFP), effective atomic number, and effective electron density. Results show that the MAC value of the studied glasses ranges between 0.0549 and 1.4415 cm2/g, increases with the amount of PbO, and decreases with increasing photon energy. The HVL and MFP values decrease with increasing PbO content and increase with increasing photon energy. The recycled glass, with the addition of PbO content (20-45 mol.%), exhibited excellent radiation shielding capabilities compared to standard barite and ferrite concretes and some glass systems. Moreover, the experimental radiation shielding parameters agree with the XCOM and PHITS values. This study suggests that this new waste-recycled glass is an effective and cost-saving candidate for X-ray and gamma-ray shielding applications.

The status of NORMs in natural environment adjacent to the Rooppur nuclear power plant of Bangladesh

  • Haydar, Md Abu;Hasan, Md Mehade;Jahan, Imrose;Fatema, Kanij;Ali, Md Idris;Paul, Debasish;Khandaker, Mayeen Uddin
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4114-4121
    • /
    • 2021
  • The Rooppur Nuclear Power Plant (RNPP), the first nuclear power plant in Bangladesh with a capacity of 2.4 GWe, is under construction on the bank of the river Padma, at Rooppur in Bangladesh. Measurement of background radioactivity in the natural environment adjacent to RNPP finds great importance for future perspectives. Soil and sediment samples collected from upstream and downstream positions of the Padma River (adjacent to RNPP) were collected and analyzed by HPGe gamma-ray spectrometry for primordial radionuclides. The average activity concentrations (in Bqkg-1) of 226Ra, 232Th and 40K radionuclides in soil samples were found to be 44.99 ± 3.89, 66.28 ± 6.55 and 553 ± 82.17 respectively. Respective values in sediment samples were found to be 44.59 ± 4.58, 67.64 ± 7.93, 782 ± 108. Relevant radiation hazard indices and dosimetric parameters were calculated and compared with the world average data recommended by US-EPA. Analytical results show non-negligible radiation hazards to the surrounding populace. Measured data will be useful to monitor any change of background radioactivity in the surrounding environment of RNPP following its operation for the generation of nuclear energy.

지역신문 뉴스 프레임 비교: 핵폐기장 관련 보도를 중심으로 (A Comparative Study of Local Newspapers' News Frame: Focus on Nuclear Waste Site Reporting)

  • 최낙진
    • 한국언론정보학보
    • /
    • 제27권
    • /
    • pp.283-316
    • /
    • 2004
  • 본 연구는 국책사업인 핵폐기장 유치와 관련해 지역간 경쟁과정에서 나타난 갈등적 이슈들을 해당 지역신문들이 어떻게 다루고 있는지를 뉴스프레임 분석을 통해 고찰했다. 연구대상인 광주일보, 매일신문, 전북일보의 뉴스기사 분석결과, 핵폐기장이라는 같은 사건에 대해 각각의 신문들이 사용하는 주요 프레임이 상이하게 나타났다. 우선 광주일보와 매일신문에서는 대항 프레임이 높게 사용되었으며, 이와 달리 전북일보에서는 지역발전 프레임이 가장 높게 집계되었다. 또한 헤드라인 주제어와 뉴스프레임 구성은 깊은 연관성이 있는 것으로 밝혀졌다. 광주일보와 매일신문의 대항프레임 기사에서는 헤드라인 주제어로 핵폐기장 사용 빈도가 높았으며, 지역발전 프레임의 전북일보기사에서는 헤드라인 주제어로 방사성폐기장이 압도적으로 높게 나타났다. 정부의 '양성자'와 '핵폐기장' 연계정책 발표 이후에도 광주일보와 매일신문에서의 뉴스 프레임은 그 이전과 비교하여 변화가 거의 없었다. 이에 반해 전북일보에서는 연계 정책 발표 이후, 대항 프레임이 현격히 감소한 대신에 정책 프레임은 크게 증가한 것으로 집계되었다. 동시에 전북일보의 헤드라인 주제어 사용에서 핵폐기장은 급격하게 감소하였으며, 방사성폐기장은 급격하게 증가한 것으로 나타났다. 이러한 결과에서 전북일보는 헤드라인 주제어로 방사성폐기장을 즐겨 사용하여 핵폐기장의 부정적 이미지를 최소화하고, 핵폐기장 유치가 곧 지역발전이라는 여론을 조성한 것이라 할 수 있다. 언론이 구성한 세계가 현실 그 자체가 된다는 그간의 프레임 연구 결과들은 당시 전북 부안으로 핵폐기장 유치가 결정된 것은 결코 우연이 아님을 보여주고 있다.

  • PDF

Managing the Back-end of the Nuclear Fuel Cycle: Lessons for New and Emerging Nuclear Power Users From the United States, South Korea and Taiwan

  • Newman, Andrew
    • 방사성폐기물학회지
    • /
    • 제19권4호
    • /
    • pp.435-446
    • /
    • 2021
  • This article examines the consequences of a significant spent fuel management decision or event in the United States, South Korea and Taiwan. For the United States, it is the financial impact of the Department of Energy's inability to take possession of spent fuel from commercial nuclear power companies beginning in 1998 as directed by Congress. For South Korea, it is the potential financial and socioeconomic impact of the successful construction, licensing and operation of a low and intermediate level waste disposal facility on the siting of a spent fuel/high level waste repository. For Taiwan, it is the operational impact of the Kuosheng 1 reactor running out of space in its spent fuel pool. From these, it draws six broad lessons other countries new to, or preparing for, nuclear energy production might take from these experiences. These include conservative planning, treating the back-end of the fuel cycle holistically and building trust through a step-by-step approach to waste disposal.

Waste Management and Treatment of Decommissioned Radioactive Combustible Waste

  • Min, B.Y.;Lee, Y.J.;Yun, G.S.;Lee, K.W.;Moon, J.K.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • 제1권1호
    • /
    • pp.75-82
    • /
    • 2013
  • A large quantity of radioactive waste was generated during the decommissioning of the KRR and UCF. The radioactive waste was packed into 200 liter drums and 4m3 containers and these were temporarily stored onsite until their final disposal in the national repository facility. Some of the releasable waste was freely released and utilized for non-nuclear industries. The combustible wastes were treated by the utilization of an incinerator with a capacity of on average 20 kg/hr.

iKSNF, the Control Tower for the R&D Program of SNF Storage and Disposal

  • Kim, Kyungsu
    • 방사성폐기물학회지
    • /
    • 제20권2호
    • /
    • pp.255-258
    • /
    • 2022
  • Three government bodies, that is, the Ministry of Science and ICT (MSIT), Ministry of Trade, Industry, and Energy (MOTIE), and Nuclear Safety and Security (NSSC), jointly established the Institute for Korea Spent Nuclear Fuel (iKSNF) in December 2020 to secure the management technologies for spent nuclear fuel (SNF). The objective of iKSNF is to successfully conduct the long-term research and development program of the 「Development of Core Technologies to Ensure Safety of Spent Nuclear Fuel Storage and Disposal System」. Our program, known as the first multi-ministry program in the nuclear field of Korea, mainly focuses on developing core technologies required for the long-term management of SNF, including those for safe storage and deep geological disposal of SNF. The program comprises three subprograms and seven key projects covering the storage, disposal, and regulatory sectors of SNF management. Our program will last from 2021 through 2029, with a budget of approximately four billion USD sponsored by MSIT, MOTIE, and NSSC.

Verification of the adequacy of domestic low-level radioactive waste grouping analysis using statistical methods

  • Lee, Dong-Ju;Woo, Hyunjong;Hong, Dae-Seok;Kim, Gi Yong;Oh, Sang-Hee;Seong, Wonjun;Im, Junhyuck;Yang, Jae Hwan
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2418-2426
    • /
    • 2022
  • The grouping analysis is a method guided by the Korea Radioactive Waste Agency for efficient analysis of radioactive waste for disposal. In this study, experiments to verify the adequacy of grouping analysis were conducted with radioactive soil, concrete, and dry active waste in similar environments. First, analysis results of the major radionuclide concentrations in individual waste samples were reviewed to evaluate whether wastes from similar environments correspond to a single waste stream. As a result, the soil and concrete waste were identified as a single waste stream because the distribution range of radionuclide concentrations was "within a factor of 10", the range that meet the criterion of the U.S. Nuclear Regulatory Commission for a single waste stream. On the other hand, the dry active waste was judged to correspond to distinct waste streams. Second, after analyzing the composite samples prepared by grouping the individual samples, the population means of the values of "composite sample analysis results/individual sample analysis results" were estimated at a 95% confidence level. The results showed that all evaluation values for soil and concrete waste were within the set reference values (0.1-10) when five-package and ten-package grouping analyses were conducted, verifying the adequacy of the grouping analysis.

Current Status of Nuclear Waste Management (and Disposal) in the United States

  • McMahon, K.;Swift, P.;Nutt, M.;Birkholzer, J.;Boyle, W.;Gunter, T.;Larson, N.;MacKinnon, R.;Sorenson, K.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • 제1권1호
    • /
    • pp.29-35
    • /
    • 2013
  • The United States Department of Energy (US DOE) is conducting research and development (R&D) activities under the Used Fuel Disposition Campaign (UFDC) to support storage, transportation, and disposal of used nuclear fuel (UNF) and wastes generated by existing and future nuclear fuel cycles. R&D activities are ongoing at nine national laboratories, and are divided into storage, transportation and disposal. Storage R&D focuses on closing technical gaps related to extended storage of UNF. Transportation R&D focuses on ensuring transportability of UNF following extended storage, and addressing data gaps regarding nuclear fuel integrity, retrievability, and demonstration of subcriticality. Disposal R&D focuses on identifying geologic disposal options and addressing technical challenges for generic disposal concepts in mined repositories in salt, clay/shale, and granitic rocks, and deep borehole disposal. UFDC R&D goals include increasing confidence in the robustness of generic disposal concepts, reducing generic sources of uncertainty that may impact the viability of disposal concepts, and developing science and engineering tools to support the selection, characterization, and licensing of a repository. The US DOE has also initiated activities in the Nuclear Fuel Storage and Transportation (NFST) Planning Project to facilitate the development of an interim storage facility and to support transportation infrastructure in the near term.