• Title/Summary/Keyword: nuclear translocation

Search Result 444, Processing Time 0.02 seconds

The pepsinolytic hydrolysate from Johnius belengerii frame inhibited LPS-stimulated production of pro-inflammatory mediators via the inactivating of JNK and NF-κB pathways in RAW 264.7 macrophages

  • Heo, Seong-Yeong;Ko, Seok-Chun;Jung, Won-Kyo
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.5
    • /
    • pp.14.1-14.8
    • /
    • 2018
  • The objective of this study was to investigate the anti-inflammatory effects of the pepsinolytic hydrolysate from the fish frame, Johnius belengerii, on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The J. belengerii frame hydrolysate (JFH) significantly suppressed nitric oxide (NO) secretion on LPS-stimulated RAW264.7 macrophages. Moreover, the JFH markedly inhibited the levels of protein and mRNA expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, the LPS-stimulated mRNA expression of pro-inflammatory cytokines, including tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$, and IL-6 was downregulated when cells were cultured with the JFH. The JFH significantly reduced the phosphorylation of c-Jun N-terminal kinase (JNK) and the translocation of nuclear factor-kappa B ($NF-{\kappa}B$) in macrophages. As the result, the JFH has the potential anti-inflammatory activity via blocking the JNK and $NF-{\kappa}B$ signal pathways.

Bcl-2 Knockdown Accelerates T Cell Receptor-Triggered Activation-Induced Cell Death in Jurkat T Cells

  • Lee, Yun-Jung;Won, Tae Joon;Hyung, Kyeong Eun;Lee, Mi Ji;Moon, Young-Hye;Lee, Ik Hee;Go, Byung Sung;Hwang, Kwang Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.73-78
    • /
    • 2014
  • Cell death and survival are tightly controlled through the highly coordinated activation/inhibition of diverse signal transduction pathways to insure normal development and physiology. Imbalance between cell death and survival often leads to autoimmune diseases and cancer. Death receptors sense extracellular signals to induce caspase-mediated apoptosis. Acting upstream of CED-3 family proteases, such as caspase-3, Bcl-2 prevents apoptosis. Using short hairpin RNAs (shRNAs), we suppressed Bcl-2 expression in Jurkat T cells, and this increased TCR-triggered AICD and enhanced TNFR gene expression. Also, knockdown of Bcl-2 in Jurkat T cells suppressed the gene expression of FLIP, TNF receptor-associated factors 3 (TRAF3) and TRAF4. Furthermore, suppressed Bcl-2 expression increased caspase-3 and diminished nuclear factor kappa B (NF-${\kappa}B$) translocation.

Knockdown of Bcl-3 Inhibits Cell Growth and Induces DNA Damage in HTLV-1-infected Cells)

  • Gao, Cai;Wang, Xia;Chen, Lin;Wang, Jin-Heng;Gao, Zhi-Tao;Wang, Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.405-408
    • /
    • 2013
  • Oncoprotein Bcl-3 is perceived as an unusual member of $I{\kappa}B$ family since it can both stimulate and suppress NF-${\kappa}B$ activation. Aberrant Bcl-3 results in increased cell proliferation and survival, suggesting a contribution to malignant potential and elevated levels of Bcl-3 have been observed in many HTLV-1-infected T cell lines and ATL cells. To investigate the specific roles of Bcl-3 in HTLV-1-infected cells, we knocked down Bcl-3 expression using shRNA and then examined the consequences with regard to DNA damage and cell proliferation, as well as NF-${\kappa}B$ activation. The HTLV-1 encoded protein Tax promotes Bcl-3 expression and nuclear translocation. In HTLV-1-infected cells, Bcl-3 knockdown obviously induced DNA damage. Cell growth and NF-${\kappa}B$ activation were reduced in HTLV-1-infected or Tax positive cells when Bcl-3 expression was decreased. Together, our results revealed positive roles of Bcl-3 in DNA stabilization, growth and NF-${\kappa}B$ activation in HTLV-1-infected cells.

YAC tripeptide of epidermal growth factor promotes the proliferation of HaCaT keratinocytes through activation of EGFR

  • Yoo, Yeon Ho;Kim, Yu Ri;Kim, Min Seo;Lee, Kyoung-Jin;Park, Kyeong Han;Hahn, Jang-Hee
    • BMB Reports
    • /
    • v.47 no.10
    • /
    • pp.581-586
    • /
    • 2014
  • Epidermal growth factor (EGF) is known to play key roles in skin regeneration and wound-healing. Here, we demonstrate that Pep2-YAC, a tripeptide covering residues 29-31 in the B loop of EGF, promotes the proliferation of HaCaT keratinocytes with activity comparable to EGF. The treatment of HaCaT cells with Pep2-YAC induced phosphorylation, internalization, and degradation of EGFR and organization of signaling complexes, which consist of Grb2, Gab1, SHP2, and PI3K. In addition, it stimulated the phosphorylation of ERK1/2 at Thr 202/Tyr 204 and of Akt1 at Ser 473 and the nuclear translocation of EGFR, STAT3, c-Jun, and c-Fos. These results suggest that Pep2-YAC may be useful as a therapeutic agent for skin regeneration and wound-healing as an EGFR agonist.

Curcumin Suppresses Activation of NF-κB and AP-1 Induced by Phorbol Ester in Cultured Human Promyelocytic Leukemia Cells

  • Han, Seong-Su;Keum, Young-Sam;Seo, Hyo-Joung;Surh, Young-Joon
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.337-342
    • /
    • 2002
  • Many components that are derived from medicinal or dietary plants possess potential chemopreventive properties. Curcumin, a yellow coloring agent from turmeric (Curcuma longa Linn, Zingiberaceae), possesses strong antimutagenic and anticarcinogenic activities. In this study, we have found that curcumin inhibits the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced nuclear factor ${\kappa}B$ (NF-${\kappa}B$) activation by preventing the degradation of the inhibitory protein $I{\kappa}B{\alpha}$ and the subsequent translocation of the p65 subunit in cultured human promyelocytic leukemia (HL-60) cells. Alternatively, curcumin repressed the TPA-induced activation of NF-${\kappa}B$ through direct interruption of the binding of NF-${\kappa}B$ to its consensus DNA sequences. Likewise, the TPA-induced DNA binding of the activator protein-1 (AP-1) was inhibited by curcumin pretreatment.

Expression of Nuclear Factor Kappa B (NF-κB) as a Predictor of Poor Pathologic Response to Chemotherapy in Patients with Locally Advanced Breast Cancer

  • Prajoko, Yan Wisnu;Aryandono, Teguh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.595-598
    • /
    • 2014
  • Background: NF-${\kappa}B$ inhibits apoptosis through induction of antiapoptotic proteins and suppression of proapoptotic genes. Various chemotherapy agents induce NF-${\kappa}B$ translocation and target gene activation. We conducted the present study to assess the predictive value of NF-${\kappa}B$ regarding pathologic responses after receiving neoadjuvant chemotherapy. Materials and Methods: We enrolled 131 patients with locally advanced invasive ductal breast carcinoma. Immunohistochemistry (IHC) was used to detect NF-${\kappa}B$ expression. Evaluation of pathologic response was elaborated with the Ribero classification. Results: Expression of NF-${\kappa}B$ was significantly associated with poor pathological response (p=0.02). From the multivariate analysis, it was found that the positive expression of NF-${\kappa}B$ yielded RR=1.74 (95%CI 0.77 to 3.94). Conclusions: NF-${\kappa}B$ can be used as a predictor of poor pathological response after neoadjuvant chemotherapy.

Probiotic Conjugated Linoleic Acid Mediated Apoptosis in Breast Cancer Cells by Downregulation of NF-κB

  • Kadirareddy, Rashmi Holur;GhantaVemuri, Sujana;Palempalli, Uma Maheswari Devi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3395-3403
    • /
    • 2016
  • Conjugated linoleic acid, a functional lipid, produced from Lactobacillus plantarum (LP-CLA), has been demonstrated to possess apoptotic activity. The anti-proliferative and apoptotic potential of LP-CLA was here evaluated in vitro using the MDA-MB-231 human breast cancer cell line as a model system. Proliferation of MDA-MB-231 cells was inhibited with increasing concentrations of LP-CLA with altered morphological features like cell detachment, rounding of cells and oligonucleosomal fragmentation of DNA. Flow cytometry confirmed the apoptotic potential of LP-CLA by ANNEXIN V/PI double staining. Furthermore, outcome results indicated that the apoptosis was mediated by downregulation of the NF-${\kappa}B$ pathway which in turn acted through proteasome degradation of $I{\kappa}B{\alpha}$, inhibition of p65 nuclear translocation, release of cytochrome-C from mitochondria and finally overexpression of Bax protein. Thus, conjugated linoleic acid, a natural product derived from probiotics, could therefore be a possible potential chemotherapeutic agent due to its apoptotic activity against estrogen receptor negative breast cancer cells.

Anti-oxidative and anti-inflammatory effects of aerial parts of Rumex japonicus Houtt. in RAW 264.7 cells (양제엽(羊蹄葉) 메탄올 추출물의 항산화 및 항염증 효과)

  • Cho, Hyun-Jin;Yun, Hyun-Jeong;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.26 no.1
    • /
    • pp.87-96
    • /
    • 2011
  • Objectives : The aerial parts of Rumex japonicus Houtt. (RF) is used by traditional clinics to treat parasite infection in East asia. This study aims a verification of anti-oxidative and anti-inflammatory effects of RF methanol extract. Methods : Anti-oxidative effects of RF were measured by scavenging activities of DPPH, superoxide, nitric oxide (NO) and peroxynitrite radicals. And also scavenging activities of anti-oxidation in lipopolysaccharide (LPS)-treated RAW 264.7 cells were measured. The inhibitory effects against the production of inflammatory mediators including NO, prostaglandin $E_2$ ($PGE_2$), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), IL-6, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and the translocation of nuclear factor (NF)-${\kappa}B$ in LPS-stimulated RAW 264.7 cells by RF were tested. Results : RF scavenged DPPH, superoxide, NO and peroxynitrite radicals, and RF (at $200{\mu}g/m{\ell}$) reduced the inflammatory mediators definitely. Conclusions : These results indicate that RF may be a potential drug source for oxidative stress related inflammatory diseases.

Effects of Radix Saussurea on hepatoprotection (목향(木香)함유 DHL과 ML이 간세포 보호에 미치는 영향)

  • Park, Jong-Chan;Yun, Young-Gab
    • Herbal Formula Science
    • /
    • v.16 no.2
    • /
    • pp.193-204
    • /
    • 2008
  • Dehydrocostus lactone (DHL) and Mokko lactone (ML) were isolated from Saussureae Radix, and their effects on heme oxygenase-1 (HO-1) expression and hepatoprotection in the liver cell line HepG2 were investigated. DHL induced HO-1 expression and HO activity in a dose-dependent manner, whereas ML lacking one double bond property at 11 and 13 carbons on its own chemical structure had no apparent effects. DHL also induced Nrf2 nuclear translocation and enhanced antioxidant response element (ARE) activation which mediated HO-1 gene transcription. Pretreatment with DHL protected HepG2 cells against oxidative damages caused by H2O2. Interestingly, the hepatoprotective effects of DHL appeared to be associated with HO enzymatic activation, HO-1 expression and Nrf2 activation, because blockage of HO activity by a HO inhibitor and inhibition of HO-1 and Nrf2 cellular synthesis by small interfering RNA abolished heptoprotection afforded by DHL. Taken together, this investigation provides evidence supporting that Saussureae Radix is hepatoprotective against oxidative stress that causes abnormal liver damages.

  • PDF

Induction of Lipin1 by ROS-Dependent SREBP-2 Activation

  • Seo, Kyuhwa;Shin, Sang Mi
    • Toxicological Research
    • /
    • v.33 no.3
    • /
    • pp.219-224
    • /
    • 2017
  • Lipin1 was identified as a phosphatidate phosphatase enzyme, and it plays a key role in lipid metabolism. Since free radicals contribute to metabolic diseases in the liver, this study investigated the effects of free radicals on the regulation of Lipin1 expression in Huh7 and AML12 cells. Hydrogen peroxide induced mRNA and protein expression of Lipin1 in Huh7 cells, which was assayed by quantitative RT-PCR and immunoblotting, respectively. Induction of Lipin1 by hydrogen peroxide was confirmed in AML12 cells. Hydrogen peroxide treatment significantly increased expression of sterol regulatory element-binding protein (SREBP)-2, but not SREBP-1. Moreover, nuclear translocation of SREBP-2 was detected after hydrogen peroxide treatment. Hydrogen peroxide-induced Lipin1 or SREBP-2 expression was significantly reduced by N-acetyl-$\small{L}$-cysteine treatment, indicating that reactive oxygen species (ROS) were implicated in Lipin1 expression. Next, we investigated whether the hypoxic environments that cause endogenous ROS production in mitochondria in metabolic diseases affect the expression of Lipin1. Exposure to hypoxia also increased Lipin1 expression. In contrast, pretreatment with antioxidants attenuated hypoxia-induced Lipin1 expression. Collectively, our results show that ROS activate SREBP-2, which induces Lipin1 expression.