Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.10.151

YAC tripeptide of epidermal growth factor promotes the proliferation of HaCaT keratinocytes through activation of EGFR  

Yoo, Yeon Ho (Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University)
Kim, Yu Ri (Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University)
Kim, Min Seo (Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University)
Lee, Kyoung-Jin (Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University)
Park, Kyeong Han (Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University)
Hahn, Jang-Hee (Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University)
Publication Information
BMB Reports / v.47, no.10, 2014 , pp. 581-586 More about this Journal
Abstract
Epidermal growth factor (EGF) is known to play key roles in skin regeneration and wound-healing. Here, we demonstrate that Pep2-YAC, a tripeptide covering residues 29-31 in the B loop of EGF, promotes the proliferation of HaCaT keratinocytes with activity comparable to EGF. The treatment of HaCaT cells with Pep2-YAC induced phosphorylation, internalization, and degradation of EGFR and organization of signaling complexes, which consist of Grb2, Gab1, SHP2, and PI3K. In addition, it stimulated the phosphorylation of ERK1/2 at Thr 202/Tyr 204 and of Akt1 at Ser 473 and the nuclear translocation of EGFR, STAT3, c-Jun, and c-Fos. These results suggest that Pep2-YAC may be useful as a therapeutic agent for skin regeneration and wound-healing as an EGFR agonist.
Keywords
EGF; EGFR; Keratinocyte proliferation; Skin regeneration; Tripeptide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Doma, E., Rupp, C. and Baccarini, M. (2013) EGFR-ras-raf signaling in epidermal stem cells: roles in hair follicle development, regeneration, tissue remodeling and epidermal cancers. Int. J. Mol. Sci. 14, 19361-19384.   DOI
2 Nanba, D., Toki, F., Barrandon, Y. and Higashiyama, S. (2013) Recent advances in the epidermal growth factor receptor/ ligand system biology on skin homeostasis and keratinocyte stem cell regulation. J. Dermatol. Sci. 72, 81-86.   DOI   ScienceOn
3 Yarden, Y. and Sliwkowski, M. X. (2001) Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2, 127-137.   DOI   ScienceOn
4 Hynes, N. E. and Lane, H. A. (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer 5, 341-354.   DOI   ScienceOn
5 Ching, Y. H., Sutton, T. L., Pierpont, Y. N., Robson, M. C. and Payne, W. G. (2011) The use of growth factors and other humoral agents to accelerate and enhance burn wound healing. Eplasty 11, e41.
6 Gembitsky, D. S., Bozso, Z., O'Flaharty, M., Otvos, F., Murphy, R. F. and Lovas, S. (2002) A specific binding site for a fragment of the B-loop of epidermal growth factor and related peptides. Peptides 23, 97-102.   DOI   ScienceOn
7 Dreux, A. C., Lamb, D. J., Modjtahedi, H. and Ferns, G. A. A. (2006) The epidermal growth factor receptors and their family of ligands: Their putative role in atherogenesis. Atherosclerosis 186, 38-53.   DOI   ScienceOn
8 Ogiso, H., Ishitani, R., Nureki, O., Fukai, S., Yamanaka, M., Kim, J. H., Saito, K., Sakamoto, A., Inoue, M., Shirouzu, M. and Yokoyama, S. (2002) Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110, 775-787.   DOI   ScienceOn
9 Komoriya, A., Hortsch, M., Meyers, C., Smith, M., Kanety, H. and Schlessinger, J. (1984) Biologically active synthetic fragments of epidermal growth factor: localization of a major receptor-binding region. Proc. Natl. Acad. Sci. U.S.A. 81, 1351-1355.   DOI
10 Pastore, S., Mascia, F., Mariani, V. and Girolomoni, G. (2008) The epidermal growth factor receptor system in skin repair and inflammation. J. Invest. Dermatol. 128, 1365-1374.   DOI   ScienceOn
11 Prausnitz, M. R. and Langer, R. (2008) Transdermal drug delivery. Nat. Biotechnol. 26, 1261-1268.   DOI   ScienceOn
12 Guo, A., Villen, J., Kornhauser, J., Lee, K. A., Stokes, M. P., Rikova, K., Possemato, A., Nardone, J., Innocenti, G., Wetzel, R., Wang, Y., MacNeill, J., Mitchell, J., Gygi, S. P., Rush, J., Polakiewicz, R. D. and Comb, M. J. (2008) Signaling networks assembled by oncogenic EGFR and c-Met. Proc. Natl. Acad. Sci. U.S.A. 105, 692-697.   DOI   ScienceOn
13 Bancroft, C. C., Chen, Z., Yeh, J., Sunwoo, J. B., Yeh, N. T., Jackson, S., Jackson, C. and Van Waes, C. (2002) Effects of pharmacologic antagonists of epidermal growth factor receptor, PI3K and MEK signal kinases on NF-$\kappa{B}$ and AP-1 activation and IL-8 and VEGF expression in human head and neck squamous cell carcinoma lines. Int. J. Cancer 99, 538-548.   DOI   ScienceOn
14 Chan, K. S., Carbajal, S., Kiguchi, K., Clifford, J., Sano, S. and DiGiovanni, J. (2004) Epidermal growth factor receptor- mediated activation of Stat3 during multistage skin carcinogenesis. Cancer Res. 64, 2382-2389.   DOI   ScienceOn
15 Nemoto, W., Saito, A. and Oikawa, H. (2013) Recent advances in functional region prediction by using structural and evolutionary information - Remaining problems and future extensions. Comput. Struct. Biotechnol. J. 8, e201308007.   DOI
16 Rodrigues, G. A., Falasca, M., Zhang, Z., Ong, S. H. and Schlessinger, J. (2000) A novel positive feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3-kinase in epidermal growth factor receptor signaling. Mol. Cell. Biol. 20, 1448-1459.   DOI
17 Lo, H. W., Hsu, S. C. and Hung, M. C. (2006) EGFR signaling pathway in breast cancers: from traditional signal transduction to direct nuclear translocalization. Breast. Cancer Res. Treat. 95, 211-218.   DOI
18 Gu, H. and Neel, B. G. (2003) The "Gab" in signal transduction. Trends. Cell Biol. 13, 122-130.   DOI   ScienceOn
19 Yart, A., Laffargue, M., Mayeux, P., Chretien, S., Peres, C., Tonks, N., Roche, S., Payrastre, B., Chap, H. and Raynal, P. (2001) A critical role for phosphoinositide 3-kinase upstream of Gab1 and SHP2 in the activation of ras and mitogen- activated protein kinases by epidermal growth factor. J. Biol. Chem. 276, 8856-8864.   DOI   ScienceOn
20 Liebmann, C. (2001) Regulation of MAP kinase activity by peptide receptor signalling pathway: paradigms of multiplicity. Cell. Signal. 13, 777-785.   DOI   ScienceOn
21 Vivanco, I. and Sawyers, C. L. (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer 2, 489-501.   DOI   ScienceOn
22 Kirisits, A., Pils, D. and Krainer, M. (2007) Epidermal growth factor receptor degradation: an alternative view of oncogenic pathways. Int. J. Biochem. Cell Biol. 39, 2173-2182.   DOI   ScienceOn
23 Lo, H.-W., Hsu, S.-C., Ali-Seyed, M., Gunduz, M., Xia, W., Wei, Y., Bartholomeusz, G., Shih, J.-Y. and Hung, M.-C. (2005) Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell. 7, 575-589.   DOI   ScienceOn
24 Nakamura, T., Takasugi, H., Aizawa, T., Yoshida, M., Mizuguchi, M., Mori, Y., Shinoda, H., Hayakawa, Y. and Kawano, K. (2005) Peptide mimics of epidermal growth factor (EGF) with antagonistic activity. J. Biotechnol. 116, 211-219.   DOI   ScienceOn
25 Bild, A. H., Turkson, J. and Jove, R. (2002) Cytoplasmic transport of Stat3 by receptor-mediated endocytosis. EMBO J. 21, 3255-3263.   DOI   ScienceOn
26 Debidda, M., Wang, L., Zang, H., Poli, V. and Zheng, Y. (2005) A role of STAT3 in Rho GTPase-regulated cell migration and proliferation. J. Biol. Chem. 280, 17275-17285.   DOI   ScienceOn