• 제목/요약/키워드: nuclear power plant accident

검색결과 437건 처리시간 0.041초

Development of an Operator Aid System For The Nuclear Plant Severe Accident Training and Management

  • Kim Ko Ryu;Park Sun Hee;Kim Dong Ha
    • International Journal of Safety
    • /
    • 제3권1호
    • /
    • pp.32-37
    • /
    • 2004
  • Recently KAERI has developed the severe accident management guidance to establish Korea standard severe accident management system. On the other hand the PC-based severe accident training simulator SATS has been developed, and the MELCOR code is used as the simulation engine. SATS graphically displays and simulates the severe accidents with interactive user commands. The control capability of SATS could make a severe accident training course more interesting and effective. In this paper the development and functions of the electrical hypertext guidance module HyperKAMG and the SATS-HyperKAMG linkage system for the severe accident management are described.

Multi-unit Level 3 probabilistic safety assessment: Approaches and their application to a six-unit nuclear power plant site

  • Kim, Sung-yeop;Jung, Yong Hun;Han, Sang Hoon;Han, Seok-Jung;Lim, Ho-Gon
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1246-1254
    • /
    • 2018
  • The importance of performing Level 3 probabilistic safety assessments (PSA) along with a general interest in assessing multi-unit risk has been sharply increasing after the Fukushima Daiichi nuclear power plant (NPP) accident. However, relatively few studies on multi-unit Level 3 PSA have been performed to date, reflecting limited scenarios of multi-unit accidents with higher priority. The major difficulty to carry out a multi-unit Level 3 PSA lies in the exponentially increasing number of multi-unit accident combinations, as different source terms can be released from each NPP unit; indeed, building consequence models for the astronomical number of accident scenarios is simply impractical. In this study, a new approach has been developed that employs the look-up table method to cover every multi-unit accident scenario. Consequence results for each scenario can be found on the table, established with a practical amount of effort, and can be matched to the frequency of the scenario. Preliminary application to a six-unit NPP site was carried out, where it was found that the difference between full-coverage and cut-off cases could be considerably high and therefore influence the total risk. Additional studies should be performed to fine tune the details and overcome the limitations of the approach.

원자력발전소 직류전원계통용 축전지 성능시험 분석 (Analysis of Battery Performance Test for DC Power System in Nuclear Power Plant)

  • 김대식;차한주
    • 전기학회논문지P
    • /
    • 제63권2호
    • /
    • pp.61-68
    • /
    • 2014
  • Function of battery bank stores energy for DC load in general, and DC power system of the nuclear power plant is used to supply DC loads for safety- featured instrumentation and control such as inverter, class 1E power system control and indication, and station annunciation. Class 1E DC power system must provide a power for the design basis accident conditions, and adequate capacity must be available during loss of AC power and subsequent safe shutdown of the plant. In present, batteries of Class 1E DC power system of the nuclear power plant uses lead-acid batteries. Class 1E batteries of nuclear power plants in Korea are summarized in terms of specification, such as capacity, discharge rate, bank configuration and discharge end voltage, etc. This paper summarizes standards of determining battery size for the nuclear power plant, and analyzes duty cycle for the class 1E DC power system of nuclear power plant. Then, battery cell size is calculated as 2613Ah according to the standard. In addition, this paper analyzes performance test results during past 13 years and shows performance degradation in the battery bank. Performance tests in 2001 and 2005 represent that entire battery cells do not reach the discharge-end voltage. Howeyer, the discharge-end voltage is reached in 14.7% of channel A (17 EA), 13.8% of channel B (16 EA), 5.2% of channel C (6 EA) and 16.4% of channel D (19 EA) at 2011 performance test. Based on the performance test results analysis and size calculation, battery capacity and degradation by age in Korearn nuclear power plant is discussed and would be used for new design.

Development of a human reliability analysis (HRA) guide for qualitative analysis with emphasis on narratives and models for tasks in extreme conditions

  • Kirimoto, Yukihiro;Hirotsu, Yuko;Nonose, Kohei;Sasou, Kunihide
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.376-385
    • /
    • 2021
  • Probabilistic risk assessment (PRA) has improved its elemental technologies used for assessing external events since the Fukushima Daiichi Nuclear Power Station Accident in 2011. HRA needs to be improved for analyzing tasks performed under extreme conditions (e.g., different actors responding to external events or performing operations using portable mitigation equipment). To make these improvements, it is essential to understand plant-specific and scenario-specific conditions that affect human performance. The Nuclear Risk Research Center (NRRC) of the Central Research Institute of Electric Power Industry (CRIEPI) has developed an HRA guide that compiles qualitative analysis methods for collecting plant-specific and scenario-specific conditions that affect human performance into "narratives," reflecting the latest research trends, and models for analysis of tasks under extreme conditions.

증기발생기 전열관 다중파단-피동보조급수냉각계통 사고 실험 기반 안전해석코드 SPACE 검증 (Verification of SPACE Code with MSGTR-PAFS Accident Experiment)

  • 남경호;김태우
    • 한국안전학회지
    • /
    • 제35권4호
    • /
    • pp.84-91
    • /
    • 2020
  • The Korean nuclear industry developed the SPACE (Safety and Performance Analysis Code for nuclear power plants) code and this code adpots two-phase flows, two-fluid, three-field models which are comprised of gas, continuous liquid and droplet fields and has a capability to simulate three-dimensional model. According to the revised law by the Nuclear Safety and Security Commission (NSSC) in Korea, the multiple failure accidents that must be considered for accident management plan of nuclear power plant was determined based on the lessons learned from the Fukushima accident. Generally, to improve the reliability of the calculation results of a safety analysis code, verification work for separate and integral effect experiments is required. In this reason, the goal of this work is to verify calculation capability of SPACE code for multiple failure accident. For this purpose, it was selected the experiment which was conducted to simulate a Multiple Steam Generator Tube Rupture(MSGTR) accident with Passive Auxiliary Feedwater System(PAFS) operation by Korea Atomic Energy Research Institute (KAERI) and focused that the comparison between the experiment results and code calculation results to verify the performance of the SPACE code. The MSGR accident has a unique feature of the penetration of the barrier between the Reactor Coolant System (RCS) and the secondary system resulting from multiple failure of steam generator U-tubes. The PAFS is one of the advanced safety features with passive cooling system to replace a conventional active auxiliary feedwater system. This system is passively capable of condensing steam generated in steam generator and feeding the condensed water to the steam generator by gravity. As the results of overall system transient response using SPACE code showed similar trends with the experimental results such as the system pressure, mass flow rate, and collapsed water level in component. In conclusion, it could be concluded that the SPACE code has sufficient capability to simulate a MSGTR accident.

설계기준초과지진 하의 원전 배관 구조건전성 평가를 위한 변형률 기반 방법 (Strain-Based Structural Integrity Evaluation Methods for Nuclear Power Plant Piping under Beyond Design Basis Earthquake)

  • 이대영;박흥배;김진원;류호완;김윤재
    • 한국압력기기공학회 논문집
    • /
    • 제12권2호
    • /
    • pp.66-70
    • /
    • 2016
  • Following the 2011 Fukushima Nuclear Power Plant accident, the IAEA has issued a revised version of the Nuclear Safety Standard for beyond design basis earthquake to consider the core meltdown accident. In Korea, relevant laws and regulations were also revised to consider beyond design basis earthquake to nuclear components. In this paper, CAV, an seismic damage factor that determines the restart of nuclear power plant after operating breakdown earthquake, is proposed for extension to the beyond design basis earthquake. For pipings not satisfying the beyond design basis earthquake condition, several evaluation methods are suggested, such as strain-based evaluation methods, simple nonlinear analysis method and cumulative damage evaluation method.

PREDICTION OF THE REACTOR VESSEL WATER LEVEL USING FUZZY NEURAL NETWORKS IN SEVERE ACCIDENT CIRCUMSTANCES OF NPPS

  • Park, Soon Ho;Kim, Dae Seop;Kim, Jae Hwan;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • 제46권3호
    • /
    • pp.373-380
    • /
    • 2014
  • Safety-related parameters are very important for confirming the status of a nuclear power plant. In particular, the reactor vessel water level has a direct impact on the safety fortress by confirming reactor core cooling. In this study, the reactor vessel water level under the condition of a severe accident, where the water level could not be measured, was predicted using a fuzzy neural network (FNN). The prediction model was developed using training data, and validated using independent test data. The data was generated from simulations of the optimized power reactor 1000 (OPR1000) using MAAP4 code. The informative data for training the FNN model was selected using the subtractive clustering method. The prediction performance of the reactor vessel water level was quite satisfactory, but a few large errors were occasionally observed. To check the effect of instrument errors, the prediction model was verified using data containing artificially added errors. The developed FNN model was sufficiently accurate to be used to predict the reactor vessel water level in severe accident situations where the integrity of the reactor vessel water level sensor is compromised. Furthermore, if the developed FNN model can be optimized using a variety of data, it should be possible to predict the reactor vessel water level precisely.

LIGHT WATER REACTOR (LWR) SAFETY

  • Sehgal Bal Raj
    • Nuclear Engineering and Technology
    • /
    • 제38권8호
    • /
    • pp.697-732
    • /
    • 2006
  • In this paper, a historical review of the developments in the safety of LWR power plants is presented. The paper reviews the developments prior to the TMI-2 accident, i.e. the concept of the defense in depth, the design basis, the large LOCA technical controversies and the LWR safety research programs. The TMI-2 accident, which became a turning point in the history of the development of nuclear power is described briefly. The Chernobyl accident, which terrified the world and almost completely curtailed the development of nuclear power is also described briefly. The great international effort of research in the LWR design-base and severe accidents, which was, respectively, conducted prior to and following the TMI-2 and Chernobyl accidents is described next. We conclude that with the knowledge gained and the improvements in plant organisation/management and in the training of the staff at the presently-installed nuclear power stations, the LWR plants have achieved very high standards of safety and performance. The Generation 3+LWR power plants, next to be installed, may claim to have reached the goal of assuring the safety of the public to a very large extent. This review is based on the historical developments in LWR safety that occurred primarily in USA, however, they are valid for the rest of the Western World. This review can not do justice to the many fine contributions that have been made over the last fifty years to the cause of LWR safety. We apologize if we have not mentioned them. We also apologize for not providing references to many of the fine investigations, which have contributed towards LWR safety earning the conclusions that we describe just above.

Severe Accident Management Using PSA Event Tree Technology

  • Choi, Young;Jeong, Kwang Sub;Park, SooYong
    • International Journal of Safety
    • /
    • 제2권1호
    • /
    • pp.50-56
    • /
    • 2003
  • There are a lot of uncertainties in the severe accident phenomena and scenarios in nuclear power plants (NPPs) and one of the major issues for severe accident management is the reduction of these uncertainties. The severe accident management aid system using Probabilistic Safety Assessments (PSA) technology is developed for the management staff in order to reduce the uncertainties. The developed system includes the graphical display for plant and equipment status, previous research results by a knowledge-base technique, and the expected plant behavior using PSA. The plant model used in this paper is oriented to identify plant response and vulnerabilities via analyzing the quantified results, and to set up a framework for an accident management program based on these analysis results. Therefore the developed system may playa central role of information source for decision-making for severe accident management, and will be used as a training tool for severe accident management.

A Systems Engineering Approach to Multi-Physics Analysis of CEA Ejection Accident

  • Sebastian Grzegorz Dzien;Aya Diab
    • 시스템엔지니어링학술지
    • /
    • 제19권2호
    • /
    • pp.46-58
    • /
    • 2023
  • Deterministic safety analysis is a crucial part of safety assessment, particularly when it comes to demonstrating the safety of nuclear power plant designs. The traditional approach to deterministic safety analysis models is to model the nuclear core using point kinetics. However, this simplified approach does not fully reflect the real core behavior with proper moderator and fuel reactivity feedbacks during the transient. The use of Multi-Physics approach allows more precise simulation reflecting the inherent three-dimensionality (3D) of the problem by representing the detailed 3D core, with instantaneous updates of feedback mechanisms due to changes of important reactivity parameters like fuel temperature coefficient (FTC) and moderator temperature coefficient (MTC). This paper addresses a CEA ejection accident at hot full power (HFP), in which the underlying strong and un-symmetric feedback between thermal-hydraulics and reactor kinetics exist. For this purpose, a multi-physics analysis tool has been selected with the nodal kinetics code, 3DKIN, implicitly coupled to the thermal-hydraulic code, RELAP5, for real-time communication and data exchange. This coupled approach enables high fidelity three-dimensional simulation and is therefore especially relevant to reactivity initiated accident (RIA) scenarios and power distribution anomalies with strong feedback mechanisms and/or un-symmetrical characteristics as in the CEA ejection accident. The Systems Engineering approach is employed to provide guidance in developing the work in a systematic and efficient fashion.