• Title/Summary/Keyword: nuclear power plant

Search Result 3,369, Processing Time 0.026 seconds

Effect of ZnO Nanoparticle Presence on SCC Mitigation in Alloy 600 in a Simulated Pressurized Water Reactors Environment

  • Sung-Min Kim;Woon Young Lee;Sekown Oh;Sang-Yul Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.401-411
    • /
    • 2023
  • This study investigates the synthesis, characterization, and application of zinc oxide (ZnO) nanoparticles for corrosion resistance and stress corrosion cracking (SCC) mitigation in high-temperature and high-pressure environments. The ZnO nanoparticles are synthesized using plasma discharge in water, resulting in rod-shaped particles with a hexagonal crystal structure. The ZnO nanoparticles are applied to Alloy 600 tubes in simulated nuclear power plant atmospheres to evaluate their effectiveness. X-ray diffraction and X-ray photoelectron spectroscopy analysis reveals the formation of thermodynamically stable ZnCr2O4and ZnFe2O4 spinel phases with a depth of approximately 35 nm on the surface after 240 hours of treatment. Stress corrosion cracking (SCC) mitigation experiments reveal that ZnO treatment enhances thermal and mechanical stability. The ZnO-treated specimens exhibit increased maximum temperature tolerance up to 310 ℃ and higher-pressure resistance up to 60 bar compared to non-treated ZnO samples. Measurements of crack length indicate reduced crack propagation in ZnO-treated specimens. The formation of thermodynamically stable Zn spinel structures on the surface of Alloy 600 and the subsequent improvements in surface properties contribute to the enhanced durability and performance of the material in challenging high-temperature and high-pressure environments. These findings have significant implications for the development of corrosion-resistant materials and the mitigation of stress corrosion cracking in various industries.

Temperature-dependent Diffusion Coefficient of Chloride Ion in UAE Concrete (UAE 콘크리트에 대한 염화물 확산의 온도의존성)

  • Ji-Won Hwang;Seung-Jun Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.4
    • /
    • pp.48-54
    • /
    • 2024
  • NPP (Nuclear power plant) structures have been constructed near to the sea shore line for cooling water and exposed to steel corrosion due to chloride attack. Regarding NPP structures built in the UAE, chloride transport may be more rapid than those in the other regions since the temperature near to the coast is high. In this study, concrete samples with 5,000psi (35MPa) design strength grade were manufactured with the materials and mix proportions, which were the same as used in the UAE NPP structures, then chloride diffusion coefficients were evaluated considering temperature and curing age. The compressive strength and the diffusion coefficient were evaluated and analyzed for the samples with 28 and 91 curing days. In addition, chloride diffusion tests for 91-day-cured condition were carried out in the range of 20℃ to 50℃. The activation energy was obtained through converting the temperature slope to a logarithmic function and it was compared with the previous studies. The proposed activation energy can be useful for a reasonable durability design by using actual temperature-dependent chloride diffusion coefficient.

Fiber Optic Sensors for Smart Monitoring (스마트 모니터링용 광섬유센서)

  • Kim, Ki-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.137-145
    • /
    • 2006
  • Recently, the interests in structural monitoring of civil infrastructures are increased. Especially, as the civil infrastructures such as bridges, tunnels and buildings become large-scale, it is necessary to monitor and maintain the safety state of the structures, which requires smart systems that can supply long-term monitoring during the service time of the structures. In this paper, we investigated the possibilities of fiber optic sensor application to the various structures. We investigate the possibility of using fiber optic Bragg grating sensors to joint structure. The sensors show good response to the structural behavior of the joint while electric gauges lack of sensitivity, durability and long term stability for continuous monitoring. We also apply fiber optic structural monitoring to the composite repaired concrete beam structure. Peel-out effects is detected with optical fiber Bragg grating sensors and the strain difference between main structure and repaired carbon sheets is observed when they separate each other. The real field test was performed to verify the behaviors of fiber Bragg grating sensors attached to the containment structure in Uljin nuclear power plant in Korea as a part of structural integrity test which demonstrates that the structural response of the non-prototype primary containment structures. The optical fiber Bragg grating sensor smart system which is the probable means for long term assessments can be applicable to monitoring of structural members in various civil infrastructures.

Development of Two-Dimensional Near-field Integrated Performance Assessment Model for Near-surface LILW Disposal (중·저준위 방사성폐기물 천층처분시설 근계영역의 2차원 통합성능평가 모델 개발)

  • Bang, Je Heon;Park, Joo-Wan;Jung, Kang Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.315-334
    • /
    • 2014
  • Wolsong Low- and Intermediate-level radioactive waste (LILW) disposal center has two different types of disposal facilities and interacts with the neighboring Wolsong nuclear power plant. These situations impose a high level of complexity which requires in-depth understanding of phenomena in the safety assessment of the disposal facility. In this context, multidimensional radionuclide transport model and hydraulic performance assessment model should be developed to identify more realistic performance of the complex system and reduce unnecessary conservatism in the conventional performance assessment models developed for the $1^{st}$ stage underground disposal. In addition, the advanced performance assessment model is required to calculate many cases to treat uncertainties or study parameter importance. To fulfill the requirements, this study introduces the development of two-dimensional integrated near-field performance assessment model combining near-field hydraulic performance assessment model and radionuclide transport model for the $2^{nd}$ stage near-surface disposal. The hydraulic and radionuclide transport behaviors were evaluated by PORFLOW and GoldSim. GoldSim radionuclide transport model was verified through benchmark calculations with PORFLOW radionuclide transport model. GoldSim model was shown to be computationally efficient and provided the better understanding of the radionuclide transport behavior than conventional model.

Simultaneous Assay of $^{14}C$ and $^{3}H$ in Evaporator Bottom by Chemical Oxidation Method (화학적 산화 방법을 이용한 농축폐액 내 $^{14}C$$^{3}H$ 정략)

  • Ahn Hong-Joo;Lee Heung-Nae;Han Sun-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.3
    • /
    • pp.193-200
    • /
    • 2005
  • [ $^{14}C$ ] and $^{3}H$ in the evaporator bottom (EB) discharged from the Nuclear power plant (NPP) were extracted simultaneously into a gaseous $^{14}CO_{2}$ and liquefied HTO by using the chemical oxidation, which is the method to oxidize samples completely using potassium persulfate and sulfuric acid. The extracted $^{14}C$ and $^{3}H$ were counted by the liquid scintillation counter (LSC) after the quench correction. To examine the recovery of $^{14}C$ using the radioactive standards, $Na_{2}^{14}CO_{3}$, $^{14}C-alcohol$, and $^{14}C-toluene$ as $^{14}C$, and HTO as $^{3}H$ were used. Also, the most suitable method for oxidizing $^{14}C-toluene$, which is difficult to be oxidized, was investigated through FT-IR spectra according to the concentration of sulfuric acid. With the identical method, $^{14}C$ and $^{3}H$ in the EB generated in the NPP were assayed in the range of $8.35{\sim}l.38{\times}10^3$ Bq/g and $2.46{\times}10^2{\sim}1.40{\times}10^4$ Bq/g, respectively.

  • PDF

Large-scale 3D SSI Analysis using KIESSI-3D Program (KIESSI-3D 프로그램을 이용한 대형 3차원 SSI 해석)

  • Lee, Eun-Haeng;Kim, Jae-Min;Seo, Choon-Gyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.439-445
    • /
    • 2013
  • The soil-structure interaction(SSI) effect should be considered to accurately assess the seismic response of structure constructed on soft soil site other than the hard bedrock. Recently, the demand of SSI analysis has increased due to strengthening of the regulatory guidelines of nuclear power plant such as the USNRC SRP 3.7.2. In this study an accuracy and running time of the KIESSI-3D program for large-scale 3D SSI analysis were investigated. The seismic SSI analysis using the KIESSI-3D program was performed for several examples of large-scale three-dimensional soil-structure interaction system. The analysis results were compared with those of the ACS/SASSI program. Good agreements in transfer functions at selected locations showd that KIESSI-3D yields accurate solution for large-scale SSI problem. Moreover, it was found that running speed of the KIESSI-3D for large-scale 3D SSI analysis is much faster than that of the ACS/SASSI about 30~2000 times.

Analysis of Fission Products on Irradiated Fuels using EPMA (EPMA를 이용한 사용후핵연료의 연소도 측정에 관한 연구)

  • JUNG Yang-Hong;YOO Byung-Ok;OH Wan-Ho;LEE Hong-Gy;CHOO Yong-Sun;HONG Kwon-Pyo
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.335-343
    • /
    • 2005
  • The Methodology of burnup calculation with EPMA test set up in this study. The spent fuel from PWR nuclear power plant was used as specimen. This $UO_2$ fuel with $3.2\%$ of enrichment had been irradiated up to 35,000 MWd/MTU(reference data). The burnup is very important factor for nuclear fuel to estimate all fuel behaviors in reactor. To measure amounts of fission products and actinides for the burnup calcualation, chemical analysis (destructive method) has been used but it mattes long experimental time and second radio-wastes. In this study, EPMA test was available to measure amount of fission products. Neodymium is able to be detected and quantified. It can be compared with the results from chemical analysis and ORIGEN-2 code calculation. Concentration of Nd from EPMA test showed good agreement with result of ORIGEN-2 code in the same burnup.

  • PDF

Importance Analysis of Radiological Exposure by Ground Deposition in Potential Accident Consequences for the Licensing Approval of a Nuclear Power Plant (원전 인허가승인을 위한 사고결말평가에서 지표침적에 의한 피폭의 민감도 분석)

  • Hwang, Won Tae;Jeong, Hae Sun;Jeong, Hyo Joon;Kim, Eun Han;Han, Moon Hee
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.2
    • /
    • pp.89-95
    • /
    • 2014
  • In potential accident consequence assessments for the licensing approval of LWRs, the ground deposition of radionuclides released into the environment is not allowed into the models, as recommended in the U. S. Nuclear Regulatory Commission's regulatory guide. Meanwhile, it is allowed into the assessment models for the licensing approval of PHWRs with consideration of more detailed physical processes of radionuclides in the atmosphere. Under these backgrounds, importance of exposure dose by ground deposition was quantitatively evaluated and comprehensively discussed. For potential accidental releases of $^{137}Cs$ and $^{131}I$, total exposure doses were more conservative in case of without consideration of ground deposition than in case of with its consideration. It was because of that the depletion of air concentration resulting from ground deposition is more influential in the contribution to total exposure doses than additional doses from contaminated ground. The exposure doses by the inhalation of contaminated air showed the contribution of more than 90% in total exposure doses, depending on atmospheric stability, release period of radionuclides and distance from a release point. The exposure doses from contaminated ground showed less than 10% at most in contribution of total exposure doses. The ratios of total exposure doses in case of with consideration of deposition to without its consideration for $^{131}I$ were distinct than those for $^{137}Cs$. As the atmosphere is more stable, release duration of radionuclides is longer, distance from a release point is longer, it was more distinct.

Experimental Evaluation of Bi-directionally Unbonded Prestressed Concrete Panel Blast Resistance Behavior under Blast Loading Scenario (폭발하중 시나리오에 따른 2방향 비부착 프리스트레스트 콘크리트 패널부재의 폭발저항성능에 대한 실험적 거동 평가)

  • Choi, Ji-Hun;Choi, Seung-Jai;Cho, Chul-Min;Kim, Tae-Kyun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.673-683
    • /
    • 2016
  • In recent years, frequent terror or military attack by explosion, impact, fire accidents have occurred. Particularly, World Trade Center collapse and US Department of Defense Pentagon attack on Sept. 11 of 2001. Also, nuclear power plant incident on Mar. 11 of 2011. These attacks and incidents were raised public concerns and anxiety of potential terrorist attacks on major infrastructures and structures. Therefore, the extreme loading researches were performed of prestressed concrete (PSC) member, which widely used for nuclear containment vessel and gas tank. In this paper, to evaluate the blast resistance capacity and its protective performance of bi-directional unbonded prestressed concrete member, blast tests were carried out on $1,400{\times}1,000{\times}300mm$ for reinforced concrete (RC), prestressed concrete without rebar (PSC), prestressed concrete with rebar (PSRC) specimens. The applied blast load was generated by the detonation of 55 lbs ANFO explosive charge at 1.0 m standoff distance. The data acquisitions not only included blast waves of incident pressure, reflected pressure, and impulse, but also included displacement, acceleration, and strains at steel, concrete, PS tendon. The results can be used as basic research references for related research areas, which include protective design and blast simulation under blast loading.

Planning of Optimal Work Path for Minimizing Exposure Dose During Radiation Work in Radwaste Storage (방사성 폐기물 저장시설에서의 방사선 작업 중 피폭선량 최소화를 위한 최적 작업경로 계획)

  • Park, Won-Man;Kim, Kyung-Soo;Whang, Joo-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.1
    • /
    • pp.17-25
    • /
    • 2005
  • Since the safety of nuclear power plant has been becoming a big social issue the exposure dose of radiation for workers has been one of the important factors concerning the safety problem. The existing calculation methods of radiation dose used in the planning of radiation work assume that dose rate does not depend on the location within a work space thus the variation of exposure dose by different work path is not considered. In this study, a modified numerical method was presented to estimate the exposure dose during radiation work in radwaste storage considering the effects of the distance between a worker and sources. And a new numerical algorithm was suggested to search the optimal work path minimizing the exposure dose in pre-defined work space with given radiation sources. Finally, a virtual work simulation program was developed to visualize the exposure dose of radiation doting radiation works in radwaste storage and provide the capability of simulation for work planning. As a numerical example, a test radiation work was simulated under given space and two radiation sources, and the suggested optimal work path was compared with three predefined work paths. The optimal work path obtained in the study could reduce the exposure dose for the given test work. Based on the results, tile developed numerical method and simulation program could be useful tools in the planning of radiation work.