• Title/Summary/Keyword: nuclear power industry

Search Result 414, Processing Time 0.029 seconds

Innovation Technology Development & Commercialization Promotion of R&D Performance to Domestic Renewable Energy (신재생에너지 기술혁신 개발과 R&D성과 사업화 촉진 방안)

  • Lee, Yong-Seok;Rho, Do-Hwan
    • Journal of Korea Technology Innovation Society
    • /
    • v.12 no.4
    • /
    • pp.788-818
    • /
    • 2009
  • Renewable energy refers to solar energy, biomass energy, hydrogen energy, wind power, fuel cell, coal liquefaction and vaporization, marine energy, waste energy, and liquidity fuel made out of byproduct of geothermal heat, hydrogen and coal; it excludes energy based on coal, oil, nuclear energy and natural gas. Developed countries have recognized the importance of these energies and thus have set the mid to long term plans to develop and commercialize the technology and supported them with drastic political and financial measures. Considering the growing recognition to the field, it is necessary to analysis up-to-now achievement of the government's related projects, in the standards of type of renewable energy, management of sectional goals, and its commercialization. Korean government is chiefly following suit the USA and British policies of developing and distributing renewable energy. However, unlike Japan which is in the lead role in solar rays industry, it still lacks in state-directed support, participation of enterprises and social recognition. The research regarding renewable energy has mainly examinedthe state of supply of each technology and suitability of specific region for applying the technology. The evaluation shows that the research has been focused on supply and demand of renewable as well as general energy and solution for the enhancement of supply capacity in certain area. However, in-depth study for commercialization and the increase of capacity in industry followed by development of the technology is still inadequate. 'Cost-benefit model for each energy source' is used in analysis of technology development of renewable energy and quantitative and macro economical effects of its commercialization in order to foresee following expand in related industries and increase in added value. First, Investment on the renewable energy technology development is in direct proportion both to the product and growth, but product shows slightly higher index under the same amount of R&D investment than growth. It indicates that advance in technology greatly influences the final product, the energy growth. Moreover, while R&D investment on renewable energy product as well as the government funds included in the investment have proportionate influence on the renewable energy growth, private investment in the total amount invested has reciprocal influence. This statistic shows that research and development is mainly driven by government funds rather than private investment. Finally, while R&D investment on renewable energy growth affects proportionately, government funds and private investment shows no direct relations, which indicates that the effects of research and development on renewable energy do not affect government funds or private investment. All of the results signify that although it is important to have government policy in technology development and commercialization, private investment and active participation of enterprises are the key to the success in the industry.

  • PDF

Suppressive effects of ethanol extract of Aralia elata on UVB-induced oxidative stress in human keratinocytes (자외선 B를 조사한 인간유래각질세포에서 두릅순 에탄올추출물의 산화적 스트레스 억제효과)

  • Kwak, Chung Shil;Yang, Jiwon
    • Journal of Nutrition and Health
    • /
    • v.49 no.3
    • /
    • pp.135-143
    • /
    • 2016
  • Purpose: Ultraviolet (UV)-induced oxidative stress contributes to several adverse biological effects on skin. Many phenolic phytochemicals have been shown to have antioxidant properties and protect skin cells from UV-induced oxidative damage. In this study, we investigated whether or not Aralia elata (AE) has a protective effect against UVB-induced reactive oxygen species (ROS), ultimately leading to photoaging. Methods: Phenolic content of dried AE and antioxidant properties of AE extract in 70% ethanol weredetermined by measuring DPPH and ABTS radical scavenging activities and ferric reducing antioxidant power (FRAP). The effect of AE extract on cellular ROS generation and expression levels of oxidative stress-response proteins such as superoxide dismutase (SOD)-1, catalase, nuclear factor-erythroid 2-related factor (Nrf)-2, and heme oxygenase (HO)-1 in UVB-irradiated ($75mJ/cm^2$) human keratinocytes (HaCaT) were further determined by 2'-7'-dichlorofluoresceine diacetate assay and Western blotting, respectively. Results: The total phenolic and flavonoid contents of dried AE were 20.15 mg tannic acid/g and 18.75 mg rutin/g, respectively. The $IC_{50}$ of AE extract against DPPH radical was $98.5{\mu}g/mL$, and ABTS radical scavenging activity and FRAP upon treatment with $1,000{\mu}g/mL$ of AE extract were $41.8{\mu}g\;ascorbic\;acid\;(AA)\;eq./mL$ and $29.7{\mu}g\;AA\;eq./mL$,m respectively. Pretreatment with AE extract significantly reduced (p < 0.05) ROS generation compared to that in UVB-irradiated control HaCaT cells. Pretreatment with AE extract reversed reduction of Nrf-2 and SOD-1 protein expression and induction of HO-1 protein expression caused by UVB exposure in HaCaT cells, whereas it did not affect catalase expression. Conclusion: AE extract in 70% ethanol demonstrated a protective effect against UVB-induced oxidative stress and decreased expression of Nrf-2 and SOD-1 in human keratinocytes. These findings suggest that AE ethanol extract might have potential as a natural resource for a skin anti-photoaging product in the food and cosmetic industry.

Antioxidant and antiproliferating effects of Setaria italica, Panicum miliaceum and Sorghum bicolor extracts on prostate cancer cell lines (조, 기장, 수수 추출물의 항산화 효과 및 전립선 암세포주 증식 억제 효능)

  • Kim, Jeong-Ho;Cho, Hyun-Dong;Hong, Seong-Min;Lee, Ju-Hye;Lee, Yong-Seok;Kim, Du-Hyun;Seo, Kwon-Il
    • Food Science and Preservation
    • /
    • v.23 no.7
    • /
    • pp.1033-1041
    • /
    • 2016
  • In this study, we evaluated antioxidant and antiproliferating effects of Setaria italica extract (SIE), Panicum miliaceum extract (PME) and Sorghum bicolor extract (SBE). Antioxidant effects of these extracts were determined by assessing DPPH radical scavenging activity, $ABTS^+$ radical scavenging activity, reducing power and superoxide dismutase (SOD)-like activity. From high concentrations ($1,000{\mu}g/mL$) of each extract at DPPH radical scavenging activities of SIE, PME and SBE were 10.5%, 5.5% and 86.8% respectively, $ABTS^+$ radical activities were 4.92%, 5.9% and 62.3% respectively, reducing powers (OD 700) were 0.15, 0.18 and 1.7 respectively, and SOD-like activities were 17.0%, 15.9% and 38.6% respectively. In addition, SBE significantly decreased the cell viability of androgen-sensitive lymph node metastasis type of prostate cancer (LNCaP) cells in a dose-dependent manner. Morphological study of SBE-treated LNCaP cells revealed distorted and shrunken cell masses. SBE-induced cell death was confirmed by observation of nuclear condensation and increased formation of apoptotic bodies. The antiproliferative effect of SBE seems to be associated with the antioxidant activity of its polyphenol content. The results of this study indicate that SBE can exert antioxidant and antiproliferative effects and may be as a useful food material.

The Effect of Aging Treatment on the High Temperature Fatigue Fracture Behavior of Friction Welded Domestic Heat Resisting Steels (SUH3-SUS 303) (마찰용접된 국산내열 강 (SUH3-SUS303 )의 시효열처리가 고온피로강도 및 파괴거동에 미치는 영향에 관한 연구)

  • Lee, Kyu-Yong;Oh, Sae-Kyoo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.2
    • /
    • pp.93-103
    • /
    • 1981
  • It is well-known that nowadays heat resisting and anti-corrosive materials have been widely used as the components materials of gas turbines, nuclear power plants and engines etc. In the fields of machine production industry. And materials for engine components, like as the exhaust valve of internal combustion engine, have been required to operate under the high temperature range of $700^{\circ}C$-$800^{\circ}C$ and high pressured gas with repeated mechanical load for the high performance of engines. For these components, friction welding for bonding of dissimilar steels can be applied for in order to obtain process shortening, production cost reduction and excellent bonding quality. And age hardening recently has been noticed to the heat resisting materials for further strengthening of high temperature strength, especially high temperature fatigue strength. However, it is difficult to find out any report concerning the effects of age hardening for strengthening high temperature fatigue strength to the Friction welded heat resisting and anti-corrosive materials. In this study the experiment was carried out as the high temperature rotary bending fatigue testing under the condition of $700^{\circ}C$ high temperature to the friction welded domestic heat resisting steels, SUH3-SUS303, which were 10hr., 100hr. aging heat treated at $700^{\circ}C$ after solution treatment 1hr. at $1, 060^{\circ}C$ for the purpose of observing the effects of the high temperature fatigue strength and fatigue fracture behaviors as well as with various mechanical properties of welded joints. The results obtained are summarized as follows: 1) Through mechanical tests and micro-structural examinations, the determined optimum welding conditions, rotating speed 2420 rpm, heating pressure 8kg/mm super(2), upsetting pressure 22kg/mm super(2), the amount of total upset 7mm (heating time 3 sec and upsetting time 2 sec) were satisfied. 2) The solution treated material SUH 3, SUS 303, have the highest inclination gradient on S-N curve due to the high temperature fatigue testing for long time at $700^{\circ}C$. 3) The optimum aging time of friction welded SUH3-SUS 303, has been recognized near the 10hr. at $700^{\circ}C$ after the solution treatment of 1hr. at $1, 060^{\circ}C$. 4) The high temperature fatigue limits of aging treated materials were compared with those of raw material according to the extender of aging time, on 10hr. aging, fatigue limits were increased by SUH 3 75.4%, SUS 303 28.5%, friction welded joints SUH 3-SUS 303 44.2% and 100hr. aging the rates were 64.9%, 30.4% and 36.6% respectively. 5) The fatigue fractures occurred at the side of the base matal SUS303 of the friction welded joints SUH 3-SUS 303 and it is difficult to find out fractures at the friction welding interfaces. 6) The cracking mode of SUS 303, SUH 3-303 is intergranular in any case, but SUH 3 is fractured by transgranular cracking.

  • PDF