• 제목/요약/키워드: nuclear power engineering

검색결과 3,911건 처리시간 0.035초

Activity Reduction Estimation by CRUDSIM-SNU

  • Bahn, Chi-Bum;Bum, Jin-Sin;Hwang, Il-Soon;Kim, Hak-Su;Mun, Ju-Hyun
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 1998년도 춘계학술발표회 초록집
    • /
    • pp.25-26
    • /
    • 1998
  • PDF

원전 증기발생기 열유동 해석법 (Thermal-Hydraulic Analysis Methodology of Nuclear Power Plant Steam Generator)

  • 최석기;김성오;최훈기
    • 한국전산유체공학회지
    • /
    • 제7권2호
    • /
    • pp.43-52
    • /
    • 2002
  • This paper presents the numerical methodology of ATHOS3 code for thermal hydraulic analysis of steam generators in nuclear power plant. Topics include porous media approach, governing equations, physical models and correlations for solid-to-fluid interaction and heat transfer, and numerical solution scheme. The ATHOS3 code is applied to the thermal hydraulic analysis of steam generator in the Korea Kori Unit-1 nuclear power plant and the computed results are presented

원자력발전소에서 정성적 요인을 고려한 신뢰성 평가 (-Reliability Assessment of Nuclear Power Plants Considering the Qualitative Factors under Uncertainty-)

  • 강영식
    • 산업경영시스템학회지
    • /
    • 제23권54호
    • /
    • pp.167-177
    • /
    • 2000
  • The problem of system reliability is very important issue in the nuclear power plant, because the failure of its system brings about extravagant economic loss, environment destruction, and quality loss. This paper therefore proposes a normalized scoring model by the qualitative factors order to evaluate the robust reliability of nuclear power plants under uncertainty. Especially, the qualitative factors including risk, functional, human error, and quality function factors for the robust justification has been also introduced. Finally, the analytical reliability and safety assessment model developed in this paper can be used in the real nuclear power plant.

  • PDF

Big Data Analysis of Public Acceptance of Nuclear Power in Korea

  • Roh, Seungkook
    • Nuclear Engineering and Technology
    • /
    • 제49권4호
    • /
    • pp.850-854
    • /
    • 2017
  • Public acceptance of nuclear power is important for the government, the major stakeholder of the industry, because consensus is required to drive actions. It is therefore no coincidence that the governments of nations operating nuclear reactors are endeavoring to enhance public acceptance of nuclear power, as better acceptance allows stable power generation and peaceful processing of nuclear wastes produced from nuclear reactors. Past research, however, has been limited to epistemological measurements using methods such as the Likert scale. In this research, we propose big data analysis as an attractive alternative and attempt to identify the attitudes of the public on nuclear power. Specifically, we used common big data analyses to analyze consumer opinions via SNS (Social Networking Services), using keyword analysis and opinion analysis. The keyword analysis identified the attitudes of the public toward nuclear power. The public felt positive toward nuclear power when Korea successfully exported nuclear reactors to the United Arab Emirates. With the Fukushima accident in 2011 and certain supplier scandals in 2012, however, the image of nuclear power was degraded and the negative image continues. It is recommended that the government focus on developing useful businesses and use cases of nuclear power in order to improve public acceptance.

구조물 및 기기의 내진성능 평가를 위한 고주파수 지진에 의한 원자력발전소의 지진응답 증폭계수 (Seismic Response Amplification Factors of Nuclear Power Plants for Seismic Performance Evaluation of Structures and Equipment due to High-frequency Earthquakes)

  • 임승현;최인길;전법규;곽신영
    • 한국지진공학회논문집
    • /
    • 제24권3호
    • /
    • pp.123-128
    • /
    • 2020
  • Analysis of the 2016 Gyeongju earthquake and the 2017 Pohang earthquake showed the characteristics of a typical high-frequency earthquake with many high-frequency components, short time strong motion duration, and large peak ground acceleration relative to the magnitude of the earthquake. Domestic nuclear power plants were designed and evaluated based on NRC's Regulatory Guide 1.60 design response spectrum, which had a great deal of energy in the low-frequency range. Therefore, nuclear power plants should carry out seismic verification and seismic performance evaluation of systems, structures, and components by reflecting the domestic characteristics of earthquakes. In this study, high-frequency amplification factors that can be used for seismic verification and seismic performance evaluation of nuclear power plant systems, structures, and equipment were analyzed. In order to analyze the high-frequency amplification factor, five sets of seismic time history were generated, which were matched with the uniform hazard response spectrum to reflect the characteristics of domestic earthquake motion. The nuclear power plant was subjected to seismic analysis for the construction of the Korean standard nuclear power plant, OPR1000, which is a reactor building, an auxiliary building assembly, a component cooling water heat exchanger building, and an essential service water building. Based on the results of the seismic analysis, a high-frequency amplification factor was derived upon the calculation of the floor response spectrum of the important locations of nuclear power plants. The high-frequency amplification factor can be effectively used for the seismic verification and seismic performance evaluation of electric equipment which are sensitive to high-frequency earthquakes.

원자력발전소 케이블의 건전성 평가방법 및 수명관리방안에 관한 고찰 (A Study on Integrity Assessment and Lifetime Management of Cables in the Containment of the Nuclear Power Plant)

  • 이창수;최미령;진태은;임우상;한성흠
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기설비전문위원
    • /
    • pp.73-75
    • /
    • 2005
  • A number of the power cables arc installed in the containment of the nuclear power plant. According to the IEEE Standard 835, the calculation of the temperature rise shows the operation possibility of power cables in the containment. In this paper, we expect the integrity of the power cables by using the calculation of the temperature rise and the development of the lifetime extension of the cables.

  • PDF

Human resource development and needs analysis for nuclear power plant deployment in Nigeria

  • Egieya, Jafaru M.;Ayo-Imoru, Ronke M.;Ewim, Daniel R.E.;Agedah, Ebisomu C.
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.749-763
    • /
    • 2022
  • The fulcrum of economic development is a sustainable supply of electricity. Nigeria is plagued with blackouts, with one of the lowest per capita electricity consumption in the world (circa. 120 kWh per capita). Hence, policies have been instigated to integrate electricity generation from nuclear power plants (NPP) on or before 2027. However, a critical requirement for NPP generation is the implementation of robust human resource development (HRD) programs. This paper presents the perspective of Nigeria in assessing human resources needs over the entire NPP lifecycle following the milestone approach and employing the IAEA's Nuclear Power Human Resource (NPHR) modeling tool. Three workforce organizations are in focus including the owner/operator, regulators, and construction workers following three decades timeframe (2015-2045). The results indicate that for the study period, a maximum of approximately 9045 personnel (73% construction workers, 24% owner/operator, and 3% regulators) should be directly involved in the NPP program just before the commissioning of the third NPP in 2033. However, this number decreases by about 73% (2465 personnel including 94% operator and 6% regulator) at the end of the study timeframe. The results can potentially provide clarity and guidance in HRD decision-making programs.