• Title/Summary/Keyword: nuclear pore

Search Result 110, Processing Time 0.031 seconds

Effects of Sus1, a component of TREX-2 complex, on growth and mRNA export in fission yeast (분열효모에서 TREX-2 복합체의 구성요소인 Sus1이 생장 및 mRNA 방출에 미치는 영향)

  • Bae, Soo Jeong;Yoon, Jin Ho
    • Korean Journal of Microbiology
    • /
    • v.53 no.1
    • /
    • pp.49-54
    • /
    • 2017
  • Sus1 / ENY2 is a tiny conserved protein that is involved in chromatin remodeling and mRNA biogenesis. Sus1 is associated to two nuclear complexes, the transcriptional coactivator SAGA and the nuclear pore associated TREX2. In fission yeast, Schizosaccharomyces pombe, ortholog of Sus1 / ENY2 was identified from the genome database. Tetrad analysis showed that the S. pombe sus1 is not essential for growth. However, deletion of the sus1 gene caused cold-sensitive growth retardation with slight accumulation of $poly(A)^+$ RNA in the nucleus. And the Sus1-GFP protein is localized mainly in the nucleus. Yeast two-hybrid analysis and co-immunoprecipitation experiment showed that Sus1 interacts with Sac3, another subunit of TREX2 complex. These results suggest that S. pombe Sus1 is also involved in mRNA export from the nucleus as a component of TREX-2 complex.

Optimization and modification of PVDF dual-layer hollow fiber membrane for direct contact membrane distillation; application of response surface methodology and morphology study

  • Bahrami, Mehdi;Karimi-Sabet, Javad;Hatamnejad, Ali;Dastbaz, Abolfazl;Moosavian, Mohammad Ali
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2241-2255
    • /
    • 2018
  • RSM methodology was applied to present mathematical models for the fabrication of polyvinylidene fluoride (PVDF) dual-layer hollow fibers in membrane distillation process. The design of experiments was used to investigate three main parameters in terms of polymer concentration in both outer and inner layers and the flow rate of dope solutions by the Box-Behnken method. According to obtained results, the optimization was done to present the proper membrane with desirable properties. The characteristics of the optimized membrane (named HF-O) suggested by the Box-Behnken (at the predicted point) showed that the proposed models are strongly valid. Then, a morphology study was done to modify the fiber by a combination of three types of a structure such as macro-void, sponge-like and sharp finger-like. It also improved the hydrophobicity of outer surface from 87 to $113^{\circ}$ and the mean pore size of the inner surface from 108.12 to 560.14 nm. The DCMD flux of modified fiber (named HF-M) enhanced 62% more than HF-O when it was fabricated by considering both of RSM and morphology study results. Finally, HF-M was conducted for long-term desalination process up to 100 hr and showed stable flux and wetting resistance during the test. These stepwise approaches are proposed to easily predict the main properties of PVDF dual-layer hollow fibers by valid models and to effectively modify its structure.

Seepage characteristics of the leaching solution during in situ leaching of uranium

  • Sheng Zeng ;Jiayin Song ;Bing Sun;Fulin Wang ;Wenhao Ye;Yuan Shen;Hao Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.566-574
    • /
    • 2023
  • Investigating the seepage characteristics of the leaching solution in the ore-bearing layer during the in situ leaching process can be useful for designing the process parameters for the uranium mining well. We prepared leaching solutions of four different viscosities and conducted experiments using a self-developed multifunctional uranium ore seepage test device. The effects of different viscosities of leaching solutions on the seepage characteristics of uranium-bearing sandstones were examined using seepage mechanics, physicochemical seepage theory, and dissolution erosion mechanism. Results indicated that while the seepage characteristics of various viscosities of leaching solutions were the same in rock samples with similar internal pore architectures, there were regular differences between the saturated and the unsaturated stages. In addition, the time required for the specimen to reach saturation varied with the viscosity of the leaching solution. The higher the viscosity of the solution, the slower the seepage flow from the unsaturated stage to the saturated stage. Furthermore, during the saturation stage, the seepage pressure of a leaching solution with a high viscosity was greater than that of a leaching solution with a low viscosity. However, the permeability coefficient of the high viscosity leaching solution was less than that of a low viscosity leaching solution.

Studies on the Fine Structures of Mouse Oocyte Whose Maturation has been suppressed in Vitro by Dibutyryl Cyclic AMP (Dibutyryl Cyclic AMP에 의해 成熟이 抑制된 Mouse 卵子의 微細構造에 관한 硏究)

  • 崔林淳
    • The Korean Journal of Zoology
    • /
    • v.18 no.2
    • /
    • pp.87-101
    • /
    • 1975
  • Electron microscopic studies on the ultrastructure of the mouse oocyte were made to investigate the inhibition of germinal vesicle breakdown by dibutyryl cAMP. The nuclear membrane of the dibutyryl cAMP-treated oocyte is characterized by a decreased degree of folding, maintains the normal double membrane structure, and shows an increased occurrence of the nuclear pore. It is suggested that these may be related to the suppression of the maturation of oocytes at the germinal vesicle. Mitochondria in the control cell were shown to be spread evenly throughout the cytoplasm and structurally underdeveloped or transitionary having little cristae development. On the contrary, mitochondria in the treated oocyte were found to be localized mainly around the nucleus and to show a greater extent of cristae development. The oocyte treated with dibutyryl cAMP appears to have fewer and structurally simpler lysosomes as compared to the control. The Golgi complex in the control oocyte exhibits the typical granular and lamellar structure, whereas that in the treated cell is poorly developed. Many multivesicular bodies, tonofilaments, and free ribosomes were observed in the control as well as in treated cells. The microvilli become structurally irregular, and a development of the perivitelline space is apparent in the treated oocyte. It is concluded that there is no basic difference in the ultrastructure between the oocytes treated with dibutyryl cAMP for 24 hours in the medium and those collected directly from the follicle. However, the finding that dibutyryl cAMP induces a development of more pores along the nuclear membrane strongly suggests the possibility that this compound inhibits the maturation of oocytes by influencing the permeability of the nuclear membrane.

  • PDF

Characteristics of the Ammonium Diuranate Powders Prepared with Different Experimental Apparatus in Sol-gel Process (졸-겔 방법으로 제조된 Ammonium Diuranate 핵연료 분말의 공정장치 변수에 따른 특성)

  • Kim, Yeon-Ku;Jeong, Kyung-Chai;Ueom, Sung-Ho;Cho, Moon Sung
    • Journal of Powder Materials
    • /
    • v.19 no.6
    • /
    • pp.398-404
    • /
    • 2012
  • This paper describes the spherical ammonium diuranate gel particles which are the intermediated material of the $UO_2$ microsphere for an VHTR(very high temperature reactor) nuclear fuel. The characteristics of the intermediate-ADU gel particles prepared by AWD(ageing, washing, and drying) and FB(fluidized-bed) apparatus were examined and compared in a sol-gel fabrication process. The electrical conductivity of washing filtrate from the FB treating and the surface area of dried-ADU gel particles were higher than those of AWD treating. Also, an internal pore volume in dried-ADU gel particles showed a more decrease in AWD treatment than FB treatment because of decomposition of PVA affected by the washing time. However, the internal microstructures of ADU gel particles were similar regardless of the process variation.

Phylogenetic Relationships among Diverse Dinoflagellate Species Occurring in Coastal Waters off Korea Inferred from Large Subunit Ribosomal DNA Sequence Data

  • Kim, Keun-Yong;Kim, Chang-Hoon
    • ALGAE
    • /
    • v.22 no.2
    • /
    • pp.57-67
    • /
    • 2007
  • We analyzed the nuclear-encoded large subunit ribosomal RNA gene (LSU rDNA) sequences of 19 dinoflagellates occurring in costal waters off Korea and reconstructed a phylogenetic tree containing 74 representative species from 37 distinct genera. Of these, the LSU rDNA sequences of Amylax triacantha (Jörgensen) Sournia, Gonyaulax verior Sournia (= Amylax diacantha Meunier), Gyrodinium fissum (Levander) Kofoid et Swezy, Katodinium glaucum (Lebour) Lebour III, Noctiluca scintillans (Macartney) Kofoid et Swezy, Oxyphysis oxytoxoides Kofoid, and Pyrophacus steinii (Schiller) Wall et Dale are reported for the first time. Our LSU rDNA tree consistently placed Oxyrrhis marina Dujardin and N. scintillans at the most primitive positions, giving rise to a strongly supported monophyletic group of typical dinoflagellate species belonging to the Dinophyceae. The phylogenetic relationships among the typical dinoflagellates, however, were not resolved in the higher taxonomic levels in general. Only genera at terminal branches were usually supported with high confidence. The Dinophysiales, represented by Dinophysis species and O. oxytoxoides, formed a strongly supported monophyletic assemblage. The Gymnodiniales and Peridiniales were recovered as polyphyletic groupings. Members of the Gonyaulacales were consistently grouped together, but lacked statistical support. Within this order, the Ceratiaceae and Goniodomataceae each formed a monophyletic group, but the Gonyaulacaceae was polyphyletic. The phylogenetic relationships of the Gonyaulacaceae were generally congruent with differences in the combinations of the apical pore complex, hypothecal organization and thecal formula.

Characteristics of waterflood at low rate in low permeability sandstones based on the CT scanning

  • Mo, S.Y.;Lei, Q.;Lei, G.;Gai, S.H.;Liu, Z.K.
    • Geosystem Engineering
    • /
    • v.21 no.6
    • /
    • pp.344-351
    • /
    • 2018
  • It is reported that the flooding rate in low permeability sandstones is low and the oil recovery is hard to increase after water breakthrough. Understanding characteristics of waterflood is hence important for the recovery improvement. In this work, flooding tests on low permeability sandstones were conducted. The corresponding flooding characteristics were investigated by means of CT scanning and Nuclear Magnetic Resonance. Effects of irreducible water and different rates were also discussed in detail. Experimental results reveal a piston-like displacement at a low rate in low permeability samples. The saturation profile is steep and almost vertical to the forward direction. The results at a low rate confirm that once water broke through, increasing the flooding rate or flooding time can hardly reduce the remaining oil inside the sample. It is probably due to the high pore-throat ratio proven by rate-controlled mercury. Results also confirm that the presence of initial water enhanced sweep efficiency substantially. On one hand, because water had previously occupied the small pores, the subsequent oil can only invade relatively large pores and became more movable. On the other hand, stable collars can not form due to the steep front, which may suppress the snap-off.

Preparation and Biodistribution of Re-188 Sulfur Colloid (Re-188이 표지된 황 교질(Sulfur Colloid) 제조와 생체내 분포)

  • Kim, Young-Ju;Jeong, Jae-Min;Chang, Young-Soo;Lee, Yong-Sin;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Song, Yeong-Wook
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.3
    • /
    • pp.298-304
    • /
    • 1998
  • Purpose: We evaluated the usefulness of Re-188 sulfur colloid for radiation synovectomy and therapy of intraperitoneal metastasis. Materials and Methods: We investigated the labeling efficiency of Re-188 sulfur colloid on various conditions. The stability of Re-188 sulfur colloid was observed at room temperature for 24 h and in human serum and synovial fluid for 72 h. The particle size distribution of Re-188 sulfur colloid was measured by filtering with various pore size filters. Animal experiment was performed in mice and rabbits. Results: The labeling efficiency of Re-188 sulfur colloid was $64.5{\pm}5.8%$ (n=5) at the conditions of sodium thiosulfate 40 mg, EDTA $Na_2.2H_2O$ 0.8 mg, $KReO_4$ 0.8 mg at pH 1. After purification, the radiochemical purity was higher than 99%. The stability of Re-188 sulfur colloid was high (>99%) at room temperature for 24 h and in human serum and synovial fluid for 72 h. The particle size distribution of Re-188 sulfur colloid was 0.3% ($<1{\mu}m$), 11.2% ($1{\sim}5{\mu}m$), 25.8% ($5{\sim}10{\mu}m$) and 52.8% ($>10{\mu}m$). In mice, 1 h postinjection of Re-188 sulfur colloid into tail vein, uptakes in lung, liver and muscle were $37.30{\pm}5.36$, $32.33{\pm}1.79$, $6.60{\pm}0.02%$ ID/organ respectively. After i.p. injection in mice, the uptakes of extraperitonial organs of Re-188 sulfur colloid at 1 and 24 h were $0.1{\pm}0.1$, $0.4{\pm}0.1%$ ID/organ, and the excretions through urine and feces (${\sim}70 h$) were low ($2.68{\pm}0.80$, $0.95{\pm}0.17%$). When Re-188 sulfur colloid was injected to synovial space of rabbit, the uptake in other organs except knee was very low. Conclusion: Re-188 sulfur colloid showed high labeling efficiency, stability and potency for clinical use.

  • PDF

Differential Subcellular Localization of Ribosomal Protein L7 Paralogs in Saccharomyces cerevisiae

  • Kim, Tae-Youl;Ha, Cheol Woong;Huh, Won-Ki
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.539-546
    • /
    • 2009
  • In Saccharomyces cerevisiae, ribosomal protein L7, one of the ~46 ribosomal proteins of the 60S subunit, is encoded by paralogous RPL7A and RPL7B genes. The amino acid sequence identity between RPl7a and RPl7b is 97 percent; they differ by only 5 amino acid residues. Interestingly, despite the high sequence homology, Rpl7b is detected in both the cytoplasm and the nucleolus, whereas Rpl7a is detected exclusively in the cytoplasm. A site-directed mutagenesis experiment revealed that the change in the amino acid sequence of Rpl7b does not influence its subcellular localization. In addition, introns of RPL7A and RPL7B did not affect the subcellular localization of Rpl7a and Rpl7b. Remarkably, Rpl7b was detected exclusively in the cytoplasm in rpl7a knockout mutant, and overexpression of Rpl7a resulted in its accumulation in the nucleolus, indicating that the subcellular localization of Rpl7a and Rpl7b is influenced by the intracellular level of Rpl7a. Rpl7b showed a wide range of localization patterns, from exclusively cytoplasmic to exclusively nucleolar, in knockout mutants for some rRNA-processing factors, nuclear pore proteins, and large ribosomal subunit assembly factors. Rpl7a, however, was detected exclusively in the cytoplasm in these mutants. Taken together, these results suggest that although Rpl7a and Rpl7b are paralogous and functionally replaceable with each other, their precise physiological roles may not be identical.

Three-dimensional porous graphene materials for environmental applications

  • Rethinasabapathy, Muruganantham;Kang, Sung-Min;Jang, Sung-Chan;Huh, Yun Suk
    • Carbon letters
    • /
    • v.22
    • /
    • pp.1-13
    • /
    • 2017
  • Porous materials play a vital role in science and technology. The ability to control their pore structures at the atomic, molecular, and nanometer scales enable interactions with atoms, ions and molecules to occur throughout the bulk of the material, for practical applications. Three-dimensional (3D) porous carbon-based materials (e.g., graphene aerogels/hydrogels, sponges and foams) made of graphene or graphene oxide-based networks have attracted considerable attention because they offer low density, high porosity, large surface area, excellent electrical conductivity and stable mechanical properties. Water pollution and associated environmental issues have become a hot topic in recent years. Rapid industrialization has led to a massive increase in the amount of wastewater that industries discharge into the environment. Water pollution is caused by oil spills, heavy metals, dyes, and organic compounds released by industry, as well as via unpredictable accidents. In addition, water pollution is also caused by radionuclides released by nuclear disasters or leakage. This review presents an overview of the state-of-the-art synthesis methodologies of 3D porous graphene materials and highlights their synthesis for environmental applications. The various synthetic methods used to prepare these 3D materials are discussed, particularly template-free self-assembly methods, and template-directed methods. Some key results are summarized, where 3D graphene materials have been used for the adsorption of dyes, heavy metals, and radioactive materials from polluted environments.