• Title/Summary/Keyword: nuclear genes

Search Result 573, Processing Time 0.022 seconds

DNA barcode and phylogenetic study of the tribe Desmodieae (Fabaceae) in Korea (한국산 도둑놈의갈고리족(콩과)의 DNA 바코드 및 계통학적 연구)

  • JIN, Dong-Pil;PARK, Jong-Won;PARK, Jong-Soo;CHOI, Byoung-Hee
    • Korean Journal of Plant Taxonomy
    • /
    • v.49 no.3
    • /
    • pp.224-239
    • /
    • 2019
  • Species identification for the Korean tribe Desmodieae was conducted using the DNA barcoding genes rbcL, matK (from chloroplast DNA) and ITS (from nuclear ribosomal DNA). A total of 25 taxa (n = 75) in five genera were sequenced, and neighbor-joining trees were constructed using different combinations of DNA barcodes. When comparing these phylogenetic trees, a tree with all loci combined (rbcL + matK + ITS) showed the highest rate of identification success (72%). On this tree, two subtribes and five genera within the tribe were supported as monophyletic. In the Desmodiinae clade, Desmodium and Hylodesmum were more closely related to each other than to Ohwia. In the Hylodesmum clade, H. oldhamii was found to be a sister to H. podocarpum complex, and all taxa within the complex were identified successfully. Subsp. fallax, regarded as a variety of subsp. oxyphyllum, is closely clustered with subsp. podocarpum. Although var. mandshuricum has been regarded as a synonym of var. oxyphyllum, this taxon is supported as a distinct variety. For the Lespedezinae clade, all species of Kummerowia were monophyletic, while nine of 16 Lespedeza taxa were identified successfully. In particular, the resolution of Macrolespedeza (28.5%) was lower than that of Junceae (77.8%). Among the Lespedeza taxa, L. cuneata was distinguishable from L. lichiyuniae, despite morphological similarities. It has been suggested that both L. maritima and L. inschanica are hybrids. The former is thought to be an independent species. While it is difficult to determine whether the latter originated via hybridization, this study showed that it is closely related to L. juncea.

Production of doubled haploid population derived from the microspore culture of rapeseed (Brassica napus L.) F1 generation and analysis of fatty acid composition (유채 잡종 1세대의 소포자 배양에 의한 배가반수체 집단 선발 및 지방산 조성 분석)

  • Lee, Ji Eun;Park, Ju Hyun;Kim, Kwang Soo;An, Da Hee;Cha, Young Lok
    • Journal of Plant Biotechnology
    • /
    • v.49 no.1
    • /
    • pp.74-81
    • /
    • 2022
  • Brassica napus, an oil crop that produces rapeseed oil, is an allotetraploid (AACC, 2n = 38) produced by natural hybridization between B. rapa and B. oleracea. In this study, microspore was cultured using the F1 developed from a cross between 'EMS26' line with high oleic acid content and 'J8634-B-30' lines. The flower bud size showing the nuclear development at the late uninucleate and binucleate stage with high embryogenesis rate was 2.6 ~ 3.5 mm. Microspores were cultured using only this size and after then most microspore embryo developed into secondary embryos and then regeneration plants obtained from the developed multilobe. The analysis of the ploidy of the plants revealed that 66.7% and 27.8% of the total lines were tetraploids and octoploids, respectively. The sizes of stomatal cells in tetraploids, octoploids, and diploids were 25.5, 35.6, and 19.9 ㎛, respectively, indicating that ploidy level was positively correlated with cell size. Furthermore, 62 tetraploid doubled haploid (DH) lines were selected. The average oleic acid (C18:1) and linolenic acid (C18:3) concentrations of DH were 72.3% and 6.2%, respectively. Oleic acid and linolenic acid concentrations exceeded the two parental values in 5 and 14 DH lines, respectively, suggesting that these two fatty acids had transgressive segregation. Therefore, the DH population can be utilized for the biosynthesis of unsaturated fatty acids in rapeseed and related genes. It can also be used as a breeding material for varieties with high oleic acid concentrations.

An Analysis of the Heritability of Phenotypic Traits Using Chloroplast Genomic Information of Legume Germplasms (엽록체 유전정보를 이용한 두류 유전자원 형태적 형질의 유전력 분석)

  • Dong Su Yu;Yu-Mi Choi;Xiaohan Wang;Manjung Kang
    • Korean Journal of Plant Resources
    • /
    • v.36 no.4
    • /
    • pp.369-380
    • /
    • 2023
  • Developing and breeding improved legume-based food resources require collecting useful genetic traits with heritability even though requiring some time-consuming, costly, and labor intensive. We attempted to infer heritability of nine genetic traits-days to flowering, days to maturity, period from flowering to maturity, the number of seeds per pod, 100-seeds weight, and four contents such as crude protein, crude oil, crude fiber, and dietary fiber-using 455 homologous chloroplast gene sets of six species of legumes. Correlation analysis between genetic trait differences and phylogenetic distance of homologous gene sets revealed that days to flowering, the number of seeds per pod, and crude oil content were influenced by genetic factors rather than environmental factors by 62.86%, 69.45%, 57.14% of correlated genes (P-value ≤ 0.05) and days to maturity showed intermediate genetic effects by 62.42% (P-value ≤ 0.1). The period from flowering to maturity and 100-seeds weight showed different results compared to those of some previous studies, which may be attributed to highly complicated internal (epistatic or additive gene effects) and external effects (cultural environment and human behaviors). Despite being slightly unexpected, our results and method can widely contribute to analyze heritability by including genetic information on mitochondria, nuclear genome, and single nucleotide polymorphisms.