• Title/Summary/Keyword: nuclear fusion

Search Result 579, Processing Time 0.025 seconds

Ribosomal protein S3 is phosphorylated by Cdk1/cdc2 during G2/M phase

  • Yoon, In-Soo;Chung, Ji-Hyung;Hahm, Soo-Hyun;Park, Min-Ju;Lee, You-Ri;Ko, Sung-Il;Kang, Lin-Woo;Kim, Tae-Sung;Kim, Joon;Han, Ye-Sun
    • BMB Reports
    • /
    • v.44 no.8
    • /
    • pp.529-534
    • /
    • 2011
  • Ribosomal protein S3 (rpS3) is a multifunctional protein involved in translation, DNA repair, and apoptosis. The relationship between rpS3 and cyclin-dependent kinases (Cdks) involved in cell cycle regulation is not yet known. Here, we show that rpS3 is phosphorylated by Cdk1 in G2/M phase. Co-immunoprecipitation and GST pull-down assays revealed that Cdk1 interacted with rpS3. An in vitro kinase assay showed that Cdk1 phosphorylated rpS3 protein. Phosphorylation of rpS3 increased in nocodazole-arrested mitotic cells; however, treatment with Cdk1 inhibitor or Cdk1 siRNA significantly attenuated this phosphorylation event. The phosphorylation of a mutant form of rpS3, T221A, was significantly reduced compared with wild-type rpS3. Decreased phosphorylation and nuclear accumulation of T221A was much more pronounced in G2/M phase. These results suggest that the phosphorylation of rpS3 by Cdk1 occurs at Thr221 during G2/M phase and, moreover, that this event is important for nuclear accumulation of rpS3.

COMMISSIONING RESULT OF THE KSTAR HELIUM REFRIGERATION SYSTEM

  • Park, Dong-Seong;Chang, Hyun-Sik;Joo, Jae-Joon;Moon, Kyung-Mo;Cho, Kwang-Woon;Kim, Yang-Soo;Bak, Joo-Shik;Cho, Myeon-Chul;Kwon, Il-Keun;Andrieu, Frederic;Beauvisage, Jerome;Desambrois, Stephane;Fauve, Eric
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.467-476
    • /
    • 2008
  • To keep the superconducting (SC) magnet coils of KSTAR at proper operating conditions, not only the coils but also other cold components, such as thermal shields (TS), magnet structures, SC bus-lines (BL), and current leads (CL) must be maintained at their respective cryogenic temperatures. A helium refrigeration system (RRS) with an exergetic equivalent cooling power of 9 kW at 4.5 K without liquid nitrogen ($LN_2$) pre-cooling has been manufactured and installed. The main components of the KST AR helium refrigeration system (HRS) can be classified into the warm compression system (WCS) and the cryogenic devices according to the operating temperature levels. The process helium is compressed from 1 bar to 22 bar passing through the WCS and is supplied to cryogenic devices. The main components of cryogenic devices are consist of cold box (C/B) and distribution box (D/B). The C/B cool-down and make the various cryogenic helium for the KSTAR Tokamak and the various cryogenic helium is distributed by the D/B as per the KSTAR requirement. In this proceeding, we will present the commissioning results of the KSTAR HRS. Circuits which can simulate the thermal loads and pressure drops corresponding to the cooling channels of each cold component of KSTAR have been integrated into the helium distribution system of the HRS. Using those circuits, the performance and the capability of the HRS, to fulfill the mission of establishing the appropriate operating condition for the KSTAR SC magnet coils, have been successfully demonstrated.

Cryogenic fracture behaviors and polarization characteristics according to sensitizing heat treatment on structural material of the nuclear fusion reactor (핵 융합로 구조재료의 예민화 열처리에 따른 극저온 파괴거동 및 분극특성)

  • Kwon, Il-Hyun;Chung, Se-Hi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.311-320
    • /
    • 1998
  • The cryogenic fracture behaviors of austenitic stainless steel HN2 developed for nuclear fusion reactor were evaluated quantitatively by using the small punch(SP) test. The electrochemical polarization test was applied to study thermal aging degradation of HN2 steel. The X-ray diffraction(XRD) analysis was conducted to detect carbides and nitrides precipitated on the grain boundary of the heat treated HN2 steel. The mechanical properties of the HN2 steel significantly decreased with increasing time and temperature of heat treatment or with decreasing testing temperature. The integrated charge(Q) obtained from electrochemical polarization test showed a good correlation with the SP energy(ESP) obtained by means of SP tests. From the results observed in the x-ray diffraction and anodic polarization curve, it was known that the material the grain boundary. Combining SP test and electrochemical polarization test, it could be useful tools to non-destructively evaluate the cryogenic fracture behaviors and the aging degradation for cryogenic structural material.

Developmental Ability of Enucleated Bovine Oocytes Matured In Vitro Following Fusion with a Single Blastomere of Embryos Matured and Fertilized In Vitro (소 체외수정란의 단일분할구와 제핵미수정란 융합배의 초기발생에 관한 연구)

  • 김정익;정희태;박춘근;양부근
    • Korean Journal of Animal Reproduction
    • /
    • v.18 no.2
    • /
    • pp.121-126
    • /
    • 1994
  • This study was conducted to examine the condition of activation of the nuclear transplant bovine embryos. In vitro fertilized(IVF) and nuclear transplant embryos(NTs) were co-cultured with bovine oviduct epithelial tissue(BOET). NTs were treated with cycloheximide(CHXM) for 0 to 6 h after electrofusion to investigate the activation conditin of recipient ooplast. Then, the infljence of the CHXM treatment timing on the cleavage and development of NTs were investigated in relation to the nuclear transplant time. The cleavage rates of NTs were increased with the increasing time of the CHXM treatment from 0 to 6 h (54.7 to 91.3%, P<0.01). Similar trend was shown in the development into the morula or blastocyst stage, but very limitted. Activation of enucleated oocytes prior to fusion enhanced development of NTs compared with that post fustion. This result suggests that the frequency of activation of NTs can be greatly enhanced by treating with CHXM for 6 h. The result also suggests that if blastomeres of unknown cell cycle stage are used, activation of enucleated oocytes prior to fusion enhances development of NTs.

  • PDF

GEOMETRICAL EFFECTS ON THERMAL-HYDRAULIC PERFORMANCE OF A MULTIPLE JET IMPINGEMENT COOLING SYSTEM IN A DIVERTOR OF NUCLEAR FUSION REACTOR (핵융합로 디버터 다중충돌제트 냉각시스템의 형상변화가 열수력학적 특성에 미치는 영향)

  • Jung, H.Y.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.26-36
    • /
    • 2017
  • A numerical study has been performed to evaluate thermal-hydraulic performance of a finger type cooling module with multiple-jet impingement in a divertor of nuclear fusion reactor. To analyze conjugate heat transfer in both solid and fluid domains, numerical analysis of the flow using three-dimensional Reynolds-averaged Navier-Stokes equations has been performed with shear stress transport turbulence model. The computational domain for the cooling module consisted of a single fluid domain and three solid domains; tile, thimble, and cartridge. The numerical results for the temperature variation on the tile were validated in comparison with experimental data under the same conditions. A parametric study was performed with four geometric parameters, i.e., angles between x-axis and centerlines of hole 1, 2, 3 and 4. The results indicate that the heat transfer rate was increased by 2.7% and 0.7% by the angle ${\theta}_1$ and angle ${\theta}_2$, respectively, and that the pressure drop was decreased by up to 1.8% by the angle ${\theta}_3$.

Study on the effect of vacuum fusion infiltration technology on the properties of tungsten/copper joining interface

  • Hao-Jie Zhang;Xue-qin Tian;Xiao-Yu Ding;Hui-Yun Zheng;Lai-Ma Luo;Yu-Cheng Wu;Jian-Hua Yao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2367-2374
    • /
    • 2024
  • In this paper, based on the need for high-strength connections between all-tungsten-oriented plasma materials and thermal sinking materials of copper and its alloys in nuclear fusion devices, a study on the effect of tungsten surface laser micro structuring on the interfacial bonding properties of W/Cu joints was carried out. In the experiment, the connectors were prepared by vacuum fusion infiltration technology, and the effects of microgroove structure on the mechanical and thermal conductivity of W/Cu connectors were investigated under different parameters (including microgroove pitch, microgroove depth, and microgroove taper). The maximum shear strength is 126.0 MPa when the pitch is 0.15 mm and the depth is 34 ㎛. In addition, the negative taper structure, i.e., the width of the entrance of the microstructure is smaller than the width of the interior of the microstructure, is also investigated. The shear tests show that there is an approximately linear relationship between the shear strength of W/Cu and taper. Compared with the positive taper, the shear strength of the samples with the same morphological density and depth of the tungsten surface is significantly higher.

OVERVIEW OF KSTAR INTEGRATED CONTROL SYSTEM

  • Park, Mi-Kyung;Kim, Kuk-Hee;Lee, Tae-Gu;Kim, Myung-Kyu;Hong, Jae-Sic;Baek, Sul-Hee;Lee, Sang-Il;Park, Jin-Seop;Chu, Yong;Kim, Young-Ok;Hahn, Sang-Hee;Oh, Yeong-Kook;Bak, Joo-Shik
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.451-458
    • /
    • 2008
  • After more than 10 years construction, KSTAR (Korea Superconducting Tokamak Advanced Research) had finally completed its assembly in June 2007, and then achieved the goal of first-plasma in July 2008 through the four month's commissioning. KSTAR was constructed with fully superconducting magnets with material of $Nb_3Sn$ and NbTi, and their operation temperatures are maintained below 4.5K by the help of Helium Refrigerator System. During the first-plasma operation, plasmas of maximum current of 133kA and maximum pulse width of 865ms were obtained. The KSTAR Integrated Control System (KICS) has successfully fulfilled its missions of surveillance, device operation, machine protection interlock, and data acquisition and management. These and more were all KSTAR commissioning requirements. For reliable and safe operation of KSTAR, 17 local control systems were developed. Those systems must be integrated into the logically single control system, and operate regardless of their platforms and location installed. In order to meet these requirements, KICS was developed as a network-based distributed system and adopted a new framework, named as EPICS (Experimental Physics and Industrial Control System). Also, KICS has some features in KSTAR operation. It performs not only 24 hour continuous plant operation, but the shot-based real-time feedback control by exchanging the initiatives of operation between a central controller and a plasma control system in accordance with the operation sequence. For the diagnosis and analysis of plasma, 11 types of diagnostic system were implemented in KSTAR, and the acquired data from them were archived using MDSpius (Model Driven System), which is widely used in data management of fusion control systems. This paper will cover the design and implementation of the KSTAR integrated control system and the data management and visualization systems. Commissioning results will be introduced in brief.

Design and fabrication of an optimized Rogowski coil for plasma current sensing and the operation confidence of Alvand tokamak

  • Eydan, Anna;Shirani, Babak;Sadeghi, Yahya;Asgarian, Mohammad Ali;Noori, Ehsanollah
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2535-2542
    • /
    • 2020
  • To understand the fundamental parameters of Alvand tokamak, A Rogowski coil with an active integrator was designed and constructed. Considering the characteristics of the Alvand tokamak, the structural and electrical parameters affecting the sensor function, were designed. Calibration was performed directly in the presence of plasma. The sensor has a high resistance against interference of external magnetic fields. Plasma current was measured in various experiments. Based on the plasma current profile and loop voltage signal, the time evolution of plasma discharge was investigated and plasma behavior was analyzed. Alvand tokamak discharge was divided into several regions that represents different physical phenomena in the plasma. During the plasma discharge time, plasma had significant changes and its characteristic was not uniform. To understand the plasma behavior in each of the phases, the Rogowski sensor should have sufficient time resolution. The Rogowski sensor with a frequency up to 15 kHz was appropriate for this purpose.

Fate of Donor Centrosome and Microtubule Dynamics of Porcine Somatic Cell Nuclear Transfer Embryos

  • Kwon, Dae-Jin;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Reproductive and Developmental Biology
    • /
    • v.34 no.2
    • /
    • pp.73-79
    • /
    • 2010
  • We investigated the microtubule dynamics, including the inheritance of donor centrosomes and the mitotic spindle assembly occurring during the first mitosis of somatic cell nuclear transfer (SCNT) embryos in pigs. SCNT embryos were fixed 15 min and 1 h after fusion in order to assess the inheritance pattern of the donor centrosome. The distribution and dynamic of the centrosome and microtubule during the first mitotic phase of SCNT embryos were also evaluated. The frequency of embryos evidencing $\gamma$-tubulin spots (centrosome) was 93.2% in the SCNT embryos 15 min after fusion. In the majority of the SCNT embryos (61.5%), however, no centrosome was observed 1 h after fusion. The frequency of the embryos with no or abnormal mitotic spindles 20 h after fusion was 19.6%. The $\gamma$-tubulin spots were detected near the nuclei of somatic cells regardless of cell cycle phase, whereas $\gamma$-tubulin spots in the SCNT embryos were observed only during the inter-anaphase transition. These results showed that the donor centrosome is inherited into the SCNT embryos, but failed to assemble the normal mitotic spindles during first mitotic phase in some SCNT embryos.