• Title/Summary/Keyword: nuclear fuel rod protection

Search Result 9, Processing Time 0.024 seconds

AN ASSESSMENT OF THE RADIATION DOSE RATE DUE TO AN OCCURRENCE OF THE DEFECT ON THE SPENT NUCLEAR FUEL ROD

  • Lee, Sang-Hun;Moon, Joo-Hyun
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.3
    • /
    • pp.144-150
    • /
    • 2009
  • This study examines how much the radiation dose rate around it varies if a crack occurs on the spent nuclear fuel rod. The spent nuclear fuel rod to be examined is that of Kori unit 3&4. The source terms are evaluated using the ORIGEN-ARP that is part of the version 5.1 of the SCALE package. The radiation dose rate is assessed using the TORT. To check if the structure of a fuel rod is appropriately modeled in the TORT calculation, the calculation results by the TORT are compared with those by the ANISN for the same case. From the code simulation, it is known that if a crack occurs on the spent nuclear fuel rod, the neutron dose rate varies depending on what material is the crack filled with, but the gamma dose rate varies irrespective of type of the material that the crack is filled with.

Development of a Water-soluble Dry Lubricant for Nuclear Fuel Rod Protection (핵 연료봉 표면보호를 위한 수용성 건식 윤활제 개발)

  • Chung, Keunwoo;Kim, Young-Wun;Lee, Sangbong;Hong, Jongsung;Han, Sangjae;Oh, Myoungho
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.343-349
    • /
    • 2014
  • Currently, in order to resist the scratching of the fuel rod surface while fabricating the fuel assembly of the light-water nuclear reactor, we use a solution of nitrocellulose, an explosive material, as a dry lubricant along with its solvent. However, the demand for developing safe and harmless aqueous alternative materials for environment-conservation and field-worker safety has increased. In this study, we demonstrate the preparation of a novel aqueous resin composite using a formulation of aqueous polymeric resin, alcoholic solvent, and water. Subsequently, we characterize this composite on the basis of hardness, adhesive property, and water solubility using plates similar to the fuel rod material. The insertion test of a fuel rod coated with the YS-3 composite shows load values of $18.8-20.5kg/cm^2$, which is comparable with $18.8-20.5kg/cm^2$ of the nitrocellulose coating agent. In addition, the depth and width of longitudinal scratches caused by the YS-3 composite test are 50% higher than those of the standard. We can develop a harmless and safe aqueous dry lubricant to replace the existing NC products through field testing of 264 pieces of fuel rods, after producing 350 kg of the YS-3 prototype. The scratch test for the rod surface showed that weight of chip of YS-3 prototype was smaller than that of NC before and after solvent treatment, indicating the properties of YS-3 prototype was comparable to the counterpart.

Dry storage of spent nuclear fuel and high active waste in Germany-Current situation and technical aspects on inventories integrity for a prolonged storage time

  • Spykman, Gerold
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.313-317
    • /
    • 2018
  • Licenses for the storage of spent nuclear fuel (SNF) and vitrified highly active waste in casks under dry conditions are limited to 40 years and have to be renewed for prolonged storage periods. If such a license renewal has to be expected since as in accordance with the new site selection procedure a final repository for spent fuel in Germany will not be available before the year 2050. For transport and possible unloading and loading in new casks for final storage, the integrity and the maintenance of the geometry of the cask's inventory is essential because the SNF rod cladding and the cladding of the vitrified highly active waste are stipulated as a barrier in the storage concept. For SNF, the cladding integrity is ensured currently by limiting the hoop stress and hoop strain as well as the maximum temperature to certain values for a 40-year storage period. For a prolonged storage period, other cladding degradation mechanisms such as inner and outer oxide layer formation, hydrogen pick up, irradiation damages in cladding material crystal structure, helium production from alpha decay, and long-term fission gas release may become leading effects driving degradation mechanisms that have to be discussed.

ESTIMATION OF THE POWER PEAKING FACTOR IN A NUCLEAR REACTOR USING SUPPORT VECTOR MACHINES AND UNCERTAINTY ANALYSIS

  • Bae, In-Ho;Na, Man-Gyun;Lee, Yoon-Joon;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.41 no.9
    • /
    • pp.1181-1190
    • /
    • 2009
  • Knowing more about the Local Power Density (LPD) at the hottest part of a nuclear reactor core can provide more important information than knowledge of the LPD at any other position. The LPD at the hottest part needs to be estimated accurately in order to prevent the fuel rod from melting in a nuclear reactor. Support Vector Machines (SVMs) have successfully been applied in classification and regression problems. Therefore, in this paper, the power peaking factor, which is defined as the highest LPD to the average power density in a reactor core, was estimated by SVMs which use numerous measured signals of the reactor coolant system. The SVM models were developed by using a training data set and validated by an independent test data set. The SVM models' uncertainty was analyzed by using 100 sampled training data sets and verification data sets. The prediction intervals were very small, which means that the predicted values were very accurate. The predicted values were then applied to the first fuel cycle of the Yonggwang Nuclear Power Plant Unit 3. The root mean squared error was approximately 0.15%, which is accurate enough for use in LPD monitoring and for core protection that uses LPD estimation.

A Steady-State Margin Comparison between Analog and Digital Protection Systems (아날로그와 디지탈 보호계통의 정상 상태 여유도 비교)

  • Auh, Geun-Sun;Hwang, Dae-Hyun;Kim, Si-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.45-57
    • /
    • 1990
  • A steady-state margin comparison study was performed between analog and digital protection systems. The systems compared are the thermal overpower and overtemperature delta T system of Westinghouse, and Core Protection Calculator System of Combustion Engineering, Inc. No dynamic offset was considered to eliminate the margin differences by different safety analysis methodologies. The result shows that the digital protection system has about 30% more rated power margin than the analog system in protecting against the fuel rod centerline melting. The digital protection system is shown to have almost same margin with the analog protection system in preventing the DNB at EOC (End of Cycle) even if the digital protection system has about 10% more margin at BOC(Beginning of Cycle).

  • PDF

OPΔT and OTΔT Trip Setpoint Generation Methodology (OPΔT 및 OTΔT트립설정치의 생산방법)

  • Ki In Han
    • Nuclear Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.106-115
    • /
    • 1984
  • Core safety limits define reactor operating conditions and parameters that will assure fuel rod and reactor system's integrity. Limiting safety system settings (LSSS) programmed into reactor protection system (RPS) then ensure a rapid reactor trip to prevent or suppress conditions which might violate the core safety limits. Generation of the LSSS must properly take into account uncertainties in both calculated and measured parameters in order to assure, with an appropriate degree of confidence, that the RPS will protect the core safety limits. Reviewed in this report are Westinghouse RPS setpoint generation philosophy, methodology of safety limit development and LSSS generation procedure. The Westinghouse RPS trip setpoint generation methodology has been established based on the calculation of core safety limits and the selection of LSSS allowing appropriate uncertainties in a conservative manner. Such conservative values of setpoint assure a high degree of core protection against fuel melting and occurrence of DNB.

  • PDF

Analysis of the criticality of the shipping cask(KSC-7) (KSC-7 사용후핵연료 수송용기 핵임계해석)

  • Yoon, Jung-Hyun;Choi, Jong-Rak;Kwak, Eun-Ho;Lee, Heung-Young;Chung, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.18 no.2
    • /
    • pp.47-59
    • /
    • 1993
  • The criticality of the shipping cask(KSC-7) for transportion of 7PWR spent fuel assemblies has been calculated and analysised on the basis of neutron transport theory. For criticality analysis, effects of the rod pitches, the fixed neutron absorbers(borated sus+boral) were considered. The effective multiplication factor has been calculated by KENO-Va, Mote Carlo method computer code, with the HANSEN-ROACH 16 group cross section set, which was made for personal computer system. The criticality for the KSC-7 cask was calculated in terms of the fresh fuel which was conservative for the aspects of nuclear critility. From the results of criticality analysis, the calculated Keff is proved to be lower than subcritical limit during normal transportation and under hypothetical accident condition. The maximum calculated criticalities of the KSC-7 were lower the safety criticality limit 1.0 recommended by US 10CFR71 both under normal and hypothetical accident condition. Also, to verify the KSC-7 criticality calculation results by using KENO-Va, it was carried out benchmark calculation with experimental data of B & W(Bobcock and Wilcox) company. From the 3s series of calculation of the KSC-7 cask and benchmark calculation, the cask was safely designed in nuclear criticality, respectively.

  • PDF

Thermal-Hydraulic Research Review and Cooperation Outcome for Light Water Reactor Fuel (경수로핵연료 열수력 연구개발 분석 및 연산학 협력 성과)

  • In, Wang Kee;Shin, Chang Hwan;Lee, Chi Young;Lee, Chan;Chun, Tae Hyun;Oh, Dong Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.815-824
    • /
    • 2016
  • The fuel assembly for pressurized water reactor (PWR) consists of fuel rod bundle, spacer grid and bottom/top end fittings. The cooling water in high pressure and temperature is introduced in lower plenum of reactor core and directed to upper plenum through the subchannel which is formed between the fuel rods. The main thermal-hydraulic performance parameters for the PWR fuel are pressure drop and critical heat flux in normal operating condition, and quenching time in accident condition. The Korea Atomic Energy Research Institute (KAERI) has been developing an advanced PWR fuel, dual-cooled annular fuel and accident tolerant fuel for the enhancement of fuel performance and the localization. For the key thermal-hydraulic technology development of PWR fuel, the KAERI LWR fuel team has conducted the experiments for pressure drop, turbulent flow mixing and heat transfer, critical heat flux(CHF) and quenching. The computational fluid dynamics (CFD) analysis was also performed to predict flow and heat transfer in fuel assembly including the spent fuel assembly in dry cask for interim repository. In addition, the research cooperation with university and nuclear fuel company was also carried out to develop a basic thermal-hydraulic technology and the commercialization.

Generation of Group Constant of Fission Product for Criticality Analysis of Spent Fuel (사용후 핵연료의 핵임계도 분석에 필요한 핵분열생성물의 핵군단면적 생산)

  • Shin, H.S.;Choi, B.I;Park, J.M.;Ro, S.G.
    • Journal of Radiation Protection and Research
    • /
    • v.14 no.2
    • /
    • pp.30-36
    • /
    • 1989
  • A FISSLIB, 51 group nuclear data set for 22 product nuclides, which are present in spent fuel and significantly affect the criticality of spent fuel, was generated from ENDF/B-IV using XLACS-II. The FISSLIB is ready to be used together with a data set generated from DLC-43/CSRL using AMPX system. The reliability of FISSLIB was verified by comparison with the data reported in BNL-325. Using FISSLIB, the criticality of KORI-1 spent fuel rod arranged infinitely was analyzed, and it was found that $K_{eff}$ of the spent fuel including fission products was lower by 9-14% than that calculated without fission products.

  • PDF