• 제목/요약/키워드: nuclear fuel channel

검색결과 138건 처리시간 0.026초

Reflood Experiments with Horizontal and Vertical Flow Channels

  • Chung, Moon-Ki;Lee, Seung-Hyuck;Park, Choon-Kyung;Lee, Young-Whan
    • Nuclear Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.153-162
    • /
    • 1980
  • 냉각재상실사고의 재관수 단계중 연료봉 피복재의 온도거동 및 열전달 기구를 파악하는 것은 비상노심냉각계통 및 원자로의 안전성해석에 중요하다. 냉각재유동채널의 방위가 rewetting과정에 미치는 영향을 연구하기 위하여 수직 및 수경 유동채널을 이용한 실험을 수행하였으며, 노심이 수평압력관으로 구성되어 있는 CANDU원자로에 관한 실험을 중점적으로 수행하여 그 결과를 수직채널의 결과와 비교 하였다. 또한 rewetting현상을 육안관찰가기 위해 환상형 테스트부 및 외부에서 가열되는 석영관을 사용하였다. 실험결과로써 수평채널에서의 rewetting 속도는 유동의 층상 현상에 크게 영향을 받으나 그 평균값은 수직채널리 경우와 큰차이없음을 알 수 있었다.

  • PDF

중수로 칼란드리아 내장품 원격 육안검사 기술 개발 (Development of Remote Visual Inspection Technology for Calandria & Internal of CANDU NPP)

  • 이상훈;진석홍;문균영
    • 한국압력기기공학회 논문집
    • /
    • 제6권1호
    • /
    • pp.72-77
    • /
    • 2010
  • During the period of reinforcement work for the licensing renewal of CANDU NPP, the fuel channels, Calandria tubes and feeders of CANDU Reactor are replaced. The remote visual inspection of Calandria internal is also performed during the period of reinforcement work. This period is a unique opportunity to inspect the inside of the Calandria. The visual inspection for the Calandria vessel and its internals of Wolsong NPP Unit 1 was performed by Nuclear Engineering & Technology Institute(NETEC) of KHNP. To perform this inspection, NETEC developed equipment applied new technology such as the synchronization of 3D CAD, automatic alignment and control system. The inspection confirmed that the Calandria integrity of Wolsong NPP Unit 1 is perfect.

  • PDF

Uncertainties impact on the major FOMs for severe accidents in CANDU 6 nuclear power plant

  • R.M. Nistor-Vlad;D. Dupleac;G.L. Pavel
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2670-2677
    • /
    • 2023
  • In the nuclear safety studies, a new trend refers to the evaluation of uncertainties as a mandatory component of best-estimate safety analysis which is a modern and technically consistent approach being known as BEPU (Best Estimate Plus Uncertainty). The major objectives of this study consist in performing a study of uncertainties/sensitivities of the major analysis results for a generic CANDU 6 Nuclear Power Plant during Station Blackout (SBO) progression to understand and characterize the sources of uncertainties and their effects on the key figure-of-merits (FOMs) predictions in severe accidents (SA). The FOMs of interest are hydrogen mass generation and event timings such as the first fuel channel failure time, beginning of the core disassembly time, core collapse time and calandria vessel failure time. The outcomes of the study, will allow an improvement of capabilities and expertise to perform uncertainty and sensitivity analysis with severe accident codes for CANDU 6 Nuclear Power Plant.

High fidelity core flow measurement experiment for an advanced research reactor using a real scale mockup

  • Taeil Kim;Yohan Lee;Donkoan Hwang;WooHyun Jung;Nakjun Choi;Seong Seok Chung;Jihun Kim;Jonghark Park;Hyung Min Son;Kiwon Song;Huiyung Kim;HangJin Jo
    • Nuclear Engineering and Technology
    • /
    • 제56권9호
    • /
    • pp.3700-3716
    • /
    • 2024
  • Owing to spatial effects and vortex flow, flow in research reactors that use plate-type fuels can be maldistributed to the parallel channels of the core, which significantly impacts the reactor safety. In this study, the core flow of an advanced research reactor was measured in a real-scale facility under various hydraulic conditions. For flow measurement, integrated pressure lines were embedded in the mockups of 22 fuel assemblies and six fission molybdenum assemblies. Each assembly mockup was individually calibrated to obtain the relationship between the pressure drop and flow rate. Real-scale facility, which implements the characteristics of the hydraulic conditions in research reactors, was then used to evaluate the assembly-to-assembly flow distribution under normal operating condition, a partially withdrawn condition for the follower fuel assemblies, no flow for the pool water management system, and 1:1.5 asymmetric inlet flow condition. As a parallel channel system, core flow distribution was analyzed with conventional header design approach. Taking into account the measuring uncertainty, the core flow was uniformly distributed within 5 % under all conditions. This was mainly because the core flow resistance was sufficiently high and the vortex flow was minimized by the perforated plate.

Calculation of Equivalent Feeder Geometries for CANDU Transient Simulations

  • Cho, Seungyon;Muzumdar, Ajit
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.429-436
    • /
    • 1995
  • This paper describes a methodology for determination of representative CANDU feeder geometry and the pressure drops between inlet/outlet header and fuel channel in the primary loop. A code, MEDOC, was developed based on this methodology and helps perform a calculation of equivalent feeder geometry for a selected channel group on the basis of feeder geometry data (fluid volume, mass flow rate, loss factor) and given property data pressure, quality, density) at inlet/outlet header. The equivalent feeder geometry calculated based on this methodology will be useful fur the transient thermohydraulic analysis of the primary heat transport system for the CANDU heavy water-cooled pressure tube reactor.

  • PDF

Study on the Use of Slightly Enriched Uranium Fuel Cycle in an Existing CANDU 6 Reactor

  • Yeom, Choong-Sub;Kim, Hyun-Dae
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.152-157
    • /
    • 1997
  • To test the viability of CANFLEX-SEU bundles in an existing CANDU 6 reactor, core follow-up simulation has been carried out using the reactor fueling simulation program of the CANDU 6, RFSP computer code, and a lattice physics code, WIMS-AECL. During the core follow-up, bundle and channel powers and zone levels have been checked against their operating limits at each simulation. It is observed from the simulation results that an equilibrium core loaded with 0.9 w/o CANFLEX-SEU bundles could be refueled ,and maintained for 550 FPD without any significant violations in the channel and bundle power limits and the permissible operating range of the liquid zone controllers.

  • PDF

Development of Sodium Voiding Model for the KALIMER Analysis

  • Chang, Won-Pyo;Dohee Hahn
    • Nuclear Engineering and Technology
    • /
    • 제34권4호
    • /
    • pp.286-300
    • /
    • 2002
  • An algorithm for the sodium boiling model has been developed for calculation of the void reactivity feedback as well as the fuel and cladding temperatures in the KALIMER core after onset of sodium boiling. Modeling of sodium boiling in liquid metal reactors using sodium as a coolant is necessary because of phenomenon difference comparing with that observed generally in light water reactor systems. The applied model to the algorithm is the multiple-bubble slug ejection model. It allows a finite number of bubbles in a channel at any time. Voiding is assumed to result from formation of bubbies that (ill the whole cross section of the coolant channel except for the liquid film left on the cladding surface. The vapor pressure, currently, is assumed to be uniform within a bubble The present study is focused on not only demonstration of the vapor bubble behavior predicted by the developed model, but also confirmation of a qualitative acceptance for the model. As a result, the model can represent important phenomena in the sodium boiling, but it is found that further effort is also needed for its completition.

Optimization of Yonsei Single-Photon Emission Computed Tomography (YSECT) Detector for Fast Inspection of Spent Nuclear Fuel in Water Storage

  • Hyung-Joo Choi;Hyojun Park;Bo-Wi Cheon;Kyunghoon Cho;Hakjae Lee;Yong Hyun Chung;Yeon Soo Yeom;Sei Hwan You;Hyun Joon Choi;Chul Hee Min
    • Journal of Radiation Protection and Research
    • /
    • 제49권1호
    • /
    • pp.29-39
    • /
    • 2024
  • Background: The gamma emission tomography (GET) device has been reported a reliable technique to inspect partial defects within spent nuclear fuel (SNF) of pin-by-pin level. However, the existing GET devices have low accuracy owing to the high attenuation and scatter probability for SNF inspection condition. The purpose of this study is to design and optimize a Yonsei single-photon emission computed tomography version 2 (YSECT.v.2) for fast inspection of SNF in water storage by acquisition of high-quality tomographic images. Materials and Methods: Using Geant4 (Geant4 Collaboration) and DETECT-2000 (Glenn F. Knoll et al.) Monte Carlo simulation, the geometrical structure of the proposed device was determined and its performance was evaluated for the 137Cs source in water. In a Geant4-based assessment, proposed device was compared with the International Atomic Energy Agency (IAEA)-authenticated device for the quality of tomographic images obtained for 12 fuel sources in a 14 × 14 Westinghouse-type fuel assembly. Results and Discussion: According to the results, the length, slit width, and septal width of the collimator were determined to be 65, 2.1, and 1.5 mm, respectively, and the material and length of the trapezoidal-shaped scintillator were determined to be gadolinium aluminum gallium garnet and 45 mm, respectively. Based on the results of performance comparison between the YSECT.v.2 and IAEA's device, the proposed device showed 200 times higher performance in gamma-detection sensitivity and similar source discrimination probability. Conclusion: In this study, we optimally designed the GET device for improving the SNF inspection accuracy and evaluated its performance. Our results show that the YSECT.v.2 device could be employed for SNF inspection.

Removal of Flooding in a PEM Fuel Cell at Cathode by Flexural Wave

  • Byun, Sun-Joon;Kwak, Dong-Kurl
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권2호
    • /
    • pp.104-114
    • /
    • 2019
  • Energy is an essential driving force for modern society. In particular, electricity has become the standard source of power for almost every aspect of life. Electric power runs lights, televisions, cell phones, laptops, etc. However, it has become apparent that the current methods of producing this most valuable commodity combustion of fossil fuels are of limited supply and has become detrimental for the Earth's environment. It is also self-evident, given the fact that these resources are non-renewable, that these sources of energy will eventually run out. One of the most promising alternatives to the burning of fossil fuel in the production of electric power is the proton exchange membrane (PEM) fuel cell. The PEM fuel cell is environmentally friendly and achieves much higher efficiencies than a combustion engine. Water management is an important issue of PEM fuel cell operation. Water is the product of the electrochemical reactions inside fuel cell. If liquid water accumulation becomes excessive in a fuel cell, water columns will clog the gas flow channel. This condition is referred to as flooding. A number of researchers have examined the water removal methods in order to improve the performance. In this paper, a new water removal method that investigates the use of vibro-acoustic methods is presented. Piezo-actuators are devices to generate the flexural wave and are attached at end of a cathode bipolar plate. The "flexural wave" is used to impart energy to resting droplets and thus cause movement of the droplets in the direction of the traveling wave.

CANDU-9 480/ SEU 원자로의 과도변화해석 (Transient Analysis of the CANDU-9 480/SEU Reactor)

  • J. C. Shin;Park, J. H.;K. N. Han;H. C. Suk
    • Nuclear Engineering and Technology
    • /
    • 제27권5호
    • /
    • pp.687-700
    • /
    • 1995
  • 제안된 CANDU-9 원자로의 열수력 과도변화상태가 해석되었으며 주요한 몇개의 과도변화가 열수송 계통의 설계요건을 만족시키는지에 대해 평가되었다. 열수송계통의 과도변화시 핵연료의 건전성과 계통압력상승의 제한 측면에서 분석된 본 해석결과에 따라서 제안된 열수송계통형상과 열수송계통기기의 예비 크기가 확정 및 검증되었다. AECB R-77 요구조건에 대한 CANDU-9 원자로의 만족여부를 평가하였다. 해석결과, 각 과도변화시 원자로 모관의 고압첨두치가 ASME코드의 요구조건에 따른 허용범주내에 있었으며 핵연료의 건전성이 확인되었다. 원자로 가동운전시 제안된 CANDU-9 원자로의 고유적인 핵연료채널을 통한 역류현상을 규명하기 위하여 한개의 펌프가 시동될때의 과도변화현상을 해석하였다.

  • PDF