• Title/Summary/Keyword: nuclear factor κB

Search Result 375, Processing Time 0.02 seconds

Anti-neuroinflammatory Effect of Teleogryllus emma Derived Teleogryllusine in LPS-stimulated BV-2 Microglia (BV-2 미세아교세포에서 왕귀뚜라미 유래 Teleogryllusine의 신경염증 억제 효과)

  • Seo, Minchul;Shin, Yong Pyo;Lee, Hwa Jeong;Baek, Minhee;Lee, Joon Ha;Kim, In-Woo;Hwang, Jae-Sam;Kim, Mi-Ae
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.999-1006
    • /
    • 2020
  • The suppression of neuroinflammatory responses in microglial cells, well known as the main immune cells in the central nervous system (CNS), are considered a key target for improving the progression of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Teleogryllus emma is widely consumed around the world for its broad-spectrum therapeutic effect. In a previous work, we performed transcriptome analysis on T. emma in order to obtain the diversity and activity of its antimicrobial peptides (AMPs). AMPs are found in a variety of species, from microorganisms to mammals. They have received much attention as candidates oftherapeutic drugs for the treatment of inflammation-associated diseases. In this study, we investigated the anti-neuroinflammatory effect of Teleogryllusine (VKWKRLNNNKVLQKIYFVKI-NH2) derived from T. emma on lipopolysaccharide (LPS) induced BV-2 microglia cells. Teleogryllusine significantly inhibited nitric oxide (NO) production without cytotoxicity, and reducing pro-inflammatory enzymes expression such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In addition, Telegryllusine also inhibited the expression of pro-inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) through down-regulation of the mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling pathway. These results suggest that T. emma-derived Teleogryllusine could be a good source of functional substances that prevent neuroinflammation and neurodegenerative diseases.

Surface-Displayed IL-10 by Recombinant Lactobacillus plantarum Reduces Th1 Responses of RAW264.7 Cells Stimulated with Poly(I:C) or LPS

  • Cai, Ruopeng;Jiang, Yanlong;Yang, Wei;Yang, Wentao;Shi, Shaohua;Shi, Chunwei;Hu, Jingtao;Gu, Wei;Ye, Liping;Zhou, Fangyu;Gong, Qinglong;Han, Wenyu;Yang, Guilian;Wang, Chunfeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.421-431
    • /
    • 2016
  • Recently, poly-γ-glutamic acid synthetase A (pgsA) has been applied to display exogenous proteins on the surface of Lactobacillus casei or Lactococcus lactis, which results in a surface-displayed component of bacteria. However, the ability of carrying genes encoded by plasmids and the expression efficiency of recombinant bacteria can be somewhat affected by the longer gene length of pgsA (1,143 bp); therefore, a truncated gene, pgsA, was generated based on the characteristics of pgsA by computational analysis. Using murine IL-10 as an exogenous gene, recombinant Lactobacillus plantarum was constructed and the capacity of the surface-displayed protein and functional differences between exogenous proteins expressed by these strains were evaluated. Surface expression of IL-10 on both recombinant bacteria with anchorins and the higher expression levels in L. plantarum-pgsA'-IL-10 were confirmed by western blot assay. Most importantly, up-regulation of IL-1β, IL-6, TNF-α, IFN-γ, and the nuclear transcription factor NF-κB p65 in RAW264.7 cells after stimulation with Poly(I:C) or LPS was exacerbated after co-culture with L. plantarum-pgsA. By contrast, IL-10 expressed by these recombinant strains could reduce these factors, and the expression of these factors was associated with recombinant strains that expressed anchorin (especially in L. plantarum-pgsA'-IL-10) and was significantly lower compared with the anchorin-free strains. These findings indicated that exogenous proteins could be successfully displayed on the surface of L. plantarum by pgsA or pgsA', and the expression of recombinant bacteria with pgsA' was superior compared with bacteria with pgsA.

Adjuvant therapy with 1% alendronate gel for experimental periodontitis treatment in rats

  • de Campos Kajimoto, Natalia;de Paiva Buischi, Yvonne;Loomer, Peter Michael;Bromage, Timothy G.;Ervolino, Edilson;Fucini, Stephen Enrico;Pola, Natalia Marcumini;Pirovani, Beatriz Ommati;Morabito, Maria Juliana Sismeiro;de Almeida, Juliano Milanezi;Furlaneto, Flavia Aparecida Chaves;Nagata, Maria Jose Hitomi
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.6
    • /
    • pp.374-385
    • /
    • 2021
  • Purpose: The aim of this study was to evaluate the effects of locally delivered 1% alendronate (ALN) gel used as an adjunct to non-invasive periodontal therapy. Methods: Ligature-induced periodontitis was performed in 96 rats. The ligature was tied in the cervical area of the mandibular left first molar. The animals were randomly divided into 4 groups: 1) NT, no treatment; 2) SRP, scaling and root planning; 3) SRP/PLA, SRP followed by filling the periodontal pocket with placebo gel (PLA); and 4) SRP/ALN, SRP followed by filling the periodontal pockets with 1% ALN gel. Histomorphometric (percentage of bone in the furcation region [PBF]) and immunohistochemical (receptor activator of nuclear factor-κB ligand, osteoprotegerin, and tartrate-resistant acid phosphatase) analyses were performed. Data were statistically analyzed, with the threshold of statistical significance set at P≤0.05. Results: The SRP, SRP/PLA, and SRP/ALN groups presented a higher PBF than the NT group (P≤0.01) at 7, 15, and 30 days. The SRP/ALN group presented a higher PBF than the SRP/PLA group in all experimental periods, as well as a higher PBF than the SRP group at 15 and 30 days. No differences were observed in the immunohistochemical analyses (P>0.05 for all). Conclusions: Locally delivered 1% ALN gel used as an adjunct to SRP enhanced bone regeneration in the furcation region in a rat model of experimental periodontitis.

The Effect of Dangguijakyak-san on Wound Healing (당귀작약산의 창상 회복에 대한 효과)

  • Yun-Jin Lee;Chang-Hoon Woo;Young-Jun Kim;Hyeon-Ji Kim;Hee-Duk An
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.33 no.3
    • /
    • pp.47-65
    • /
    • 2023
  • Objectives We evaluated the wound healing effects of Dangguijakyak-san (DJ) using C57BL/6 mice that were generated open wound. Methods The study was conducted with seven C57BL/6 mice assigned to each group, divided into the normal group, control group, vitamin E group, DJ low-dose group, DJ high-dose group. We measured total polyphenol, flavonoid contents, the size of the wound, liver function, pro-inflammatory cytokine activity in serum, inflammation-related proteins, adhesion molecules and chemokine proteins, collagen-related proteins in skin tissue and histopathological changes by H&E and Masson's staining. Results DJ treatment significantly reduced the area of the wound compared to the control group. Also, inflammatory cytokines were reduced and the expression of anti-inflammatory-related factors (interleukin-4 [IL-4] and IL-10) was significantly increased in the DJ treatment group. We identified that DJ treatment inhibits both pathways of inflammation, the mitogen-activated protein kinases and nuclear factor-κB pathway. Moreover, the protein expressions of Sirt1 (sirtuin 1), MCP-1 (monocyte chemoattractant protein 1), ICAM-1 (intercellular adhesion molecule 1), and VCAM-1 (vascular cell adhesion molecule 1) were decreased by DJ administration. Also, the expression of α-smooth muscle actin and collagen type I alpha 1, collagen-related proteins, that help skin recovery was significantly increased in the DJ treatment group. Histopathologically, a relatively thin epithelial layer could be observed in the DJ administration group, as well as an increase in fibroblasts and collagen fibers. Conclusions These data suggest that DJ treatment is effective in wound healing, suppressing inflammatory proteins, increasing skin repair factors and improving histopathological changes caused by wounds.

Inhibitory Effects of Tenebrio molitor Larvae Ethanol Extract on RANKL-Induced Osteoclast Differentiation (갈색거저리 유충 에탄올 추출물이 RANKL에 의해 유도되는 파골세포 분화에 미치는 영향)

  • Seo, Minchul;Baek, Minhee;Lee, Hwa Jeong;Shin, Yong Pyo;Lee, Joon Ha;Kim, In-Woo;Kim, Mi-Ae;Hwang, Jae-Sam
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.983-989
    • /
    • 2020
  • The balance between bone-resorbing osteoclasts and bone-forming osteoblasts is key to bone health. An imbalance between osteoclasts and osteoblasts leads to various bone-related disorders, such as osteoporosis, osteomalacia, and osteopetrosis. However, the bone-resorption inhibitor drugs that are currently used may cause side effects. Natural substances have recently received much attention as therapeutic drugs for the treatment of bone health. This study was designed to determine the effect of Tenebrio molitor larvae ethanol extract (TME) on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. To measure the effect of TME on osteoclast differentiation, RAW264.7 cells were treated with RANKL with or without TME for 5 days. The tartrate-resistant acid phosphatase (TRAP) activity was significantly inhibited by treatment of TME without cytotoxicity up to 2 mg/ml. In addition, TME effectively suppressed expression of osteoclast differentiation-related marker genes and proteins such as TRAP, NFATc1, and c-Src. TME also significantly inhibited the p38 mitogen-activated protein kinase (MAPK) signaling pathway without affecting ERK and JNK signaling in RANKL-induced RAW264.7 cells. Consequently, we conclude that TME suppresses osteoclast differentiation by inhibiting RANKL-induced osteoclastogenic genes expression through the p38 MAPK signaling pathways. These results suggest that TME and its bioactive components are potential therapeutics for bone-related diseases such as osteoporosis.